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1. Introduction
• NASICON (Na Super Ionic Conductor)-type LiTi2(PO4)3 (LTP) (space group
R-3c)has been under investigation as a promising solid-state electrolyte.

• This is attributed to its possession of a 3D network of TiO6 octahedra
corner-linked to PO4 tetrahedra that forms tunnels through which Li+
cations can migrate.

• The focus has been on improving its ionic conductivity (10-7 S/cm) by
tuning the tunnel size and increasing the amount of charge carriers, via
aliovalent lattice site substitutions at the Ti4+ (12c) site to the order of 10-4

S/cm in 15% Al-doped LTP. [1, 2]

Aim
• To study the average and local structure of a new 12,5% Al, 2,5% Dy co-

doped LTP system, showing an improved ionic conductivity (10-5 S/cm).

2. Methodology
❑ Synchrotron Bragg & total scattering data
Bragg and total scattering data were measured at the 28-ID-1 (PDF)
beamline at the National Synchrotron Light Source – II (NSLS-II) in
transmission geometry (0,16635 Å). Rietveld and small-box modelling
analyses were carried on TOPAS Academic, 3 with the structures visualized in
VESTA. 4

❑ Raman spectroscopy
Laboratory-based Raman spectra were measured using an Ar+ laser (514 nm
wavelength), with a 600 lines/mm grating and a 100 × objective lens.

❑ X-ray absorption near-edge structure (XANES)
Experimental Dy L3-edge XAS data of LADTP were measured at the 6-BM
beamline at NSLS-II, using a Si (111) double crystal monochromator. Typical
data reduction and linear combination fitting (LCF) analyses were carried out
in the ARTEMIS package of DEMETER. 5

❑ Theoretical approach to Dy L3-edge XANES using FEFF10 6

➢ The optimum spectrum of Dy2O3 standard (Ia-3) symmetry, was a
weighted average of two inequivalent Dy environments.

➢ All calculations employed an 8 Å cluster, with both electric dipole &
quadrupole transitions accounted for.

➢ The Hedin-Lundqvist exchange-correlation potential with many-pole self-
energy and a ground-state background function were used, with self-
consistent field (SCF) and full multiple scattering (FMS).

➢ Subsequent spectra of Dy in LADTP rhombohedral (R-3c), tetragonal
(I41/amd) and monoclinic (P21/n) DyPO4 environments were calculated
and aligned to the high-energy region of the experimental LADTP
spectrum for LCF.

3. Results & Discussion
2. Average structure from Raman spectroscopy

• Vibrational spectrum indexed to the rhombohedral (R-3c) NASICON-type
structure, similar to XRD.

• No significant account of the effect of doping on the [Ti(PO4)3]- framework.

3. Local structure from small-box modelling of the pair distribution function (PDF)

• Average rhombohedral structure does not account for features at r < 10 Å.
• Replacing Ti4+ with larger cations can induce monoclinic/triclinic distortions.
• Applying a monoclinic P21/n model best describes the local structure.

4. Experimental vs Computational XANES

• The LADTP spectrum largely consists of the secondary DyPO4 (I41/amd) phase
computational model from Bragg; however, this model alone does not fully
account for the Exp. data.

• LCF results suggest that Exp. LADTP consists of approximately 86:14 ratio of
I41/amd : P21/n models.

4. Conclusions
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Figure 1. A closer look at the local environment of L(A)TP depicting the TiO6 octahedra corner-linked to PO4
tetrahedra. Li+ occupies two sites: 6-fold oxygen coordinated M1 (6b), and the 8-fold oxygen coordinated M2 (18e). 
Excess Li+ added for charge balance occupy the 36f sites of higher stability relative to 18e.

• The average structure of 12,5% Al, 2,5% Dy co-doped LTP system was
successfully indexed to the rhombohedral NASICON-type structure (space
group R-3c).

• Secondary phases of AlPO4 (space group C2221) and DyPO4 (space group
I41/amd) were observed from XRD.

• Raman spectroscopy data corroborated the rhombohedral structure
observed in XRD. However, the effects of replacing Ti4+ with Al3+ and Dy3+ at
the 12c site were not fully understood.

• Small-box modelling of PDF data showed a deviation of the local structure
from the average rhombohedral structure. The replacement of Ti4+ with
Dy3+ showed a monoclinic local structure (space group P21/n), analogous to
β-Fe2(SO4)3.

• Experimental XANES confirmed a +3 oxidation state for Dy.
• Computational XANES showed that the contribution of the secondary

DyPO4 phase from Bragg data, although significant, did not fully account
for the observed spectrum. Including the spectrum from Dy exhibiting a
monoclinic structure accounted for the spectrum reasonably well.
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Figure 4. Small-box modelling of x-ray PDF data using (a) the rhombohedral NASICON-type R-3c from Bragg data, 
and (b) the monoclinic β-Fe2(SO4)3-type P21/c structure, 4 showing the discrepancy between average and local 
structure.
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Figure 3. Raman spectrum of the Al, Dy co-doped LADTP system, indexed to the NASICON-type rhombohedral 
structure. 7

3. Results & Discussion
1. Average structure from synchrotron XRD (Bragg)

• Average (Bragg) structural data showed successful formation of the
rhombohedral NASICON-type phase of LADTP, analogous to LTP (ICSD
95979).

• Secondary phases of DyPO4 (ICSD 35705) and AlPO4 (ICSD 98382) were
also observed.

Figure 5. The Dy L3-edge XANES showing the (a) I41/amd model from the DyPO4 secondary phase, (b) the 
monoclinic P21/n model deduced from PDF small-box modelling accounting for the distorted local structure , and 
(c) the experimental spectrum of LADTP, with the simulated  summed spectra at 86% I41/amd + 14 % P21/c obtained 
from LCF. 

5. Future work
❑Determining more accurate phase contributions of computational spectra

to better reproduce the experimental data.
❑ Improve the peak broadening and white line intensity agreement between

the Exp. And Comp. XANES spectra.

Figure 2. The room-temperature synchrotron XRD data of LADTP measured at NSLS-11. The main phase was 
indexed to the rhombohedral NASICON-type LTP (space group R-3c; 94,57%). Secondary phases of DyPO4
(space group I41/amd; 3,30%) and AlPO4 (space group C2221; 2,13%) were also detected. 
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