Simulation studies of molecule and ion transport in hydrogen bonded media

Materials Simulations in Earth and Planetary Sciences Seminar Series, Columbia University

Mark E. Tuckerman

Chair of Chemistry, Professor of Chemistry and Mathematics Dept. of Chemistry and Courant Institute of Mathematical Sciences New York University, 100 Washington Square East, NY 10003 NYU-ECNU Center for Computational Chemistry at NYU Shanghai 200062, China 华东师范大学-纽约大学计算化学联合研究中心

Climate change: Coming into focus after COVID?

Li ion battery:

Why Fuel cells?

- Ease of filling versus recharging.
- No harmful emissions.
- No need for mining of crucial metals (lithium, nickel, cobalt,...).
- CO₂ production in H₂ production versus metal recycling.
- Higher energy density by weight, allowing greater range.

Challenges

- Still not cost-effective.
- Durability issues.
- On-board hydrogen storage challenges.
- Fuel cells only versus fuel-cell enhancement of battery performance?

PbA = lead acid; NiMH = nickel metal hydride; Li-Ion = lithium ion; MPa = megapascal, a unit of pressure (1MPa = 145 psi). Source: <u>Cadex Electronics (CH)</u>

Anode: $2H_2 \rightarrow 4H^+ + 4e^-$ Cathode: $O_2 + 4e^- + 4H^+ \rightarrow 2H_2O$ Overall: $2H_2 + O_2 \rightarrow 2H_2O$

D. Wu, S. J. Paddison, J. A. Elliott, S. J. Hamrock Langmuir 26 (2010).

Triblock copolymer:

Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS)

Anode: $2H_2 + 4OH^- \rightarrow 4H_2O + 4e^-$ Cathode: $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$ Overall: $2H_2 + O_2 \rightarrow 2H_2O$

Advantages of AEMs

- 1. No precious metal catalysts
- 2. Reverse electro-osmotic flow means better water management
- Much less known about AEMs compared to PEMs. Design principles needed.

AEM fuel cells among the first to be developed.

Used to power on-board systems in Apollo missions

- Qualitative change in morphology with hydration
- Exclusive water domains at $\lambda = 16$ and 20

$$M_{i}\ddot{\mathbf{R}}_{i} = \sum_{j\neq i} \left[\mathbf{F}_{ij}^{C} + \mathbf{F}_{ij}^{D} + \mathbf{F}_{ij}^{R}\right] + \mathbf{f}_{i}^{\text{bonded}}$$

1806:

54

ANNALES

MÉMÓIRE

Sur la décomposition de l'eau et des corps qu'elle tient en dissolution à l'aide de l'électricité galvanique,

Theodor v. Grotthuls

PAR C. J. T. DE GROTTHUSS (1).

CHAPITRE PREMIER.

Action de l'électricité galvanique sur certains corps dissous dans l'eau.

S. PREMIER.

SANS m'arrêter à la discussion d'une foule d'hypothèses imaginées pour expliquer la décomposition de l'eau par l'appareil électromoteur, j'exposerai une théorie générale de la décomposition des liquides par l'électricité galvanique, qui me paroît réduire les effets de celle-ci à une explication simple

Grotthuss mechanism (Proton hopping)

Vehicle mechanism

之人人人人

⁽¹⁾ Ce Mémoire a été imprimé à Rome en 1805. Nous avons pensé qu'on le trouveroit i ci avec plaisir, et l'auteur lui-même à desiré qu'on le réimprimât.

Ab initio molecular dynamics (AIMD)

Electrons

Electrons

Kohn-Sham DFT [BLYP + DCACP + PW]

Newton's 2nd law:

$$\left[-\frac{\nabla^2}{2} + V_{\rm KS}[n](\mathbf{r}, \mathbf{R})\right] \psi_i(\mathbf{r}) = \varepsilon_i \psi_i(\mathbf{r}) \qquad \qquad \mathbf{F}_I = M_I \frac{d^2 \mathbf{R}_I}{dt^2}$$

Start with nuclei \longrightarrow Add electrons \longrightarrow Compute $\longrightarrow n_0(\mathbf{r}), \{\psi_i(\mathbf{r})\} \Rightarrow \mathbf{F}_I$ \uparrow \downarrow Add electrons \longleftarrow Move nuclei with \mathbf{F}_I $\mathbf{R}_I(t + \Delta t) = \mathbf{R}_I(t) + \Delta t \dot{\mathbf{R}}_I(t) + \frac{\Delta t^2}{2M_I} \mathbf{F}_I(t)$

From Z. Ma and MET *Chem. Phys. Lett.* **511**, 177 (2011) 32 water molecules + 1 OH- in 10 Å periodic box run for 80 ps Exchange-correlation = BLYP + DCACP, Code = PINY_MD Basis set = Discrete Variable Representation [H. S. Lee and MET *JPCA* (2006)]

Bulk aqueous transport mechanism [MET et al. ACR (2006)]

Comparing IR spectra and diffusion

From Roberts, et al. PNAS 106 (2009)

14 M KOH IR spectrum Expt.: Librovich and Maiorov, *Russian J. Phys. Chem.* **56**, 624 (1982)

New York University

Hydroxide diffusion constants at different temperatures

¹H-NMR Pulsed Field Gradient Measurements

Temperature increased by 10 K every 15 mins.

¹H-NMR Pulsed Field Gradient Measurements

Role of water layers

b20 system:

A. The Relative Time (in %) the Two Hydroxide Ions Spend in Each Water Layer

T. Zelovich and MET J. Phys. Chem. Lett. 11, 5087 (2020).

Water Layer	3A+0D	3A+1D	4A+0D	4A+1D	Others
	૱ ૱		ی بی بی		
Population probabilities	8.0	7.4	39.3	28.7	16.6
L_1	54	18.9	27	0	
L ₂	7.5	10.9	44.5	31.6	
L ₃ -L ₄	8.3	8.6	29.8	36.4	
L_5	27.8	4.9	52.5	11.4	
Bulk	5.1	10.4	50.5	29.9	

Z. Ma and MET Chem. Phys. Lett. 511, 177 (2011)

Role of water layers in b10 system

(a) TMA

All in Å²/ps

Changing cation chemistry: Water distributions

TMI, $\lambda = 4,375$ K

TMA, $\lambda = 4,375$ K

Increased diffusion and more uniform water distribution help keep the cathode hydrated, which boosts AEM fuel cell performance.

Ionic Conductivity of various Materials

Cosby et al. PRL (2018)

High proton conductivity seen in nanoconfined liquids of derivatized Imi.

S. J. Paddison and H. A. Gasteiger, Encyclopedia of Sustainability Science & Technology, Springer, NY (2012).

Z. R. Long, A. O. Atsango, T. E. Markland, MET J. Phys. Chem. Lett. 11, 6156 (2020)

Z. R. Long, A. O. Atsango, T. E. Markland, MET J. Phys. Chem. Lett. 11, 6156 (2020)

Î

A. Witt, et al. JPCC (2010); J. R. Cendagorta, et al. PCCP (2016); J. R. Cendagorata et al. Adv. Theor. Simulat. (2021)

Occupancy: 4 H₂ in large cages, 1 in small cages ~ 3.8 mass %, 2 in small cages ~ 5.3 mass % DOE target value ~ 5.5 mass %

Quantum equilibrium properties derived from the canonical partition function:

$$Z(\beta) = \operatorname{Tr}\left[e^{-\beta\hat{H}}\right] = \int d\mathbf{r} \, \left\langle \mathbf{r} \left|e^{-\beta(\hat{T}+\hat{V})}\right|\mathbf{r}\right\rangle$$
$$= \lim_{P \to \infty} \int d\mathbf{r}_{1} \cdots d\mathbf{r}_{P} \, \prod_{i=1}^{P} \left\langle \mathbf{r}_{i} \left|\hat{\Omega}\right|\mathbf{r}_{i+1}\right\rangle_{\mathbf{r}_{P+1}=\mathbf{r}_{1}}, \qquad \hat{\Omega} = e^{-\beta\hat{T}/P} e^{-\beta\hat{V}/P}$$

$$Z_P(\beta) = \left(\frac{mP}{2\pi\beta\hbar^2}\right)^{3P/2} \int d\mathbf{r}_1 \cdots d\mathbf{r}_P \exp\left\{-\sum_{i=1}^P \left[\frac{mP}{2\beta\hbar^2} (\mathbf{r}_i - \mathbf{r}_{i+1})^2 + \frac{\beta}{P} V(\mathbf{r}_i)\right]\right\} \bigg|_{\mathbf{r}_{P+1} = \mathbf{r}_1}$$

Classical particle Quantum particle (thermodynamic view) Interacting quantum particles

Creating a neural network potential [Behler and Parrinello PRL (2007)]

$$G_{i}^{2} = \sum_{j=1}^{N_{\text{atom}}} e^{-\eta (R_{ij} - R_{s})^{2}} f_{c}(R_{ij})$$

3 Networks: O_w, H_w, H₂ Trained to revPBE0 + D3 dispersion

$$G_{i}^{3} = 2^{1-\zeta} \sum_{j \neq k} \sum_{k \neq i, j} \left[\left(1 + \lambda \cos \theta_{ijk} \right)^{\zeta} e^{-\eta \left(R_{ij}^{2} + R_{ik}^{2} + R_{jk}^{2} \right)} f_{c}(R_{ij}) f_{c}(R_{ik}) f_{c}(R_{jk}) \right]$$

Training data:

- 1,600 configurations of a water box with 64 molecules
- 3,000 configurations of a H₂ box with 56 molecules
- 500 configurations of an H₂ + H₂O box of different compositions.
- 500 actual H₂+clathrate configurations.

8 K

Quantum rates from ring-polymer molecular dynamics

R. Craig and D. E. Manolopoulos *J. Chem. Phys.* (2005) T. J. H. Hele and S. C. Althorpe *J. Chem. Phys.* (2013)

Quantum rate coefficient:

$$k(\beta) = \frac{1}{Z_r(\beta)} \lim_{t \to \infty} C_{\rm fs}(t)$$

Flux-side correlation function:

- -

$$C_{\rm fs}(t) = {\rm Tr}\Big[\hat{F}(q^{\dagger})e^{i\tau^*\hat{H}/\hbar}\theta(\hat{q}(\hat{\mathbf{r}}) - q^{\dagger}I)e^{-i\tau\hat{H}/\hbar}\Big], \qquad \tau = t - \frac{i\beta\hbar}{2}$$

Flux operator

$$\hat{F}(q^{\dagger}) = \frac{1}{2m} \Big[\hat{p} \delta \Big(\hat{q}(\hat{\mathbf{r}}) - q^{\dagger}I \Big) + \delta \Big(\hat{q}(\hat{\mathbf{r}}) - q^{\dagger}I \Big) \hat{p} \Big]$$

RPMD approximation:

$$k(\beta) \approx k_{\text{RPMD}}(\beta) = \frac{p(q_c^{\dagger})}{\sqrt{2\pi\beta\mu}} \lim_{t \to \infty} \kappa(t)$$

Quantum rates from ring-polymer molecular dynamics

Reaction-coordinate probability

$$p(q_c^{\dagger}) = \frac{e^{-\beta\Delta F(q_c^{\dagger})}}{\int_{q_r}^{q^{\dagger}} dq_c \ e^{-\beta\Delta F(q_c)}}$$

 $\kappa(t)$ is computed from ring-polymer molecular dynamics [I. R. Craig and D. E. Manolopoulos *J. Chem. Phys.* **121**, 3368 (2004)]

Reaction coordinate

$$H_{P} = \sum_{i=1}^{P} \frac{\mathbf{p}_{i}^{2}}{2m} + \frac{1}{2}mP\omega_{P}^{2}\sum_{i=1}^{P} (\mathbf{r}_{i+1} - \mathbf{r}_{i})^{2} + \sum_{i=1}^{P} V(\mathbf{r}_{i}), \qquad \omega_{P} = \frac{\sqrt{P}}{\beta\hbar}$$

Equations of motion:

$$\dot{\mathbf{r}}_i = \frac{\mathbf{p}_i}{m}, \qquad \dot{\mathbf{p}}_i = -mP\omega_P^2 \left(2\mathbf{r}_i - \mathbf{r}_{i+1} - \mathbf{r}_{i-1}\right) - \frac{\partial V}{\partial \mathbf{r}_i}$$

50 K

25 K

First results at 120 K

Solvation	Chemical Potential		
Process	$[{f kcal} \ {f mol}^{-1}]$		
$\{0\} \to \{1\}$	$-5.6 (\pm 0.01)$		
$\{1\} \to \{2\}$	$-4.1 \ (\pm \ 0.02)$		
$\{2\} \to \{3\}$	$-3.9 \ (\pm \ 0.02)$		
$\{3\} \rightarrow \{4\}$	$-4.2 \ (\pm \ 0.02)$		

Experimental barrier estimate from NMR: 3.8 kcal/mol. [Senadheera, Conradi *JPCB* (2007)]

Acknowledgements

Stephen J. Paddison Chemical/Biomolecular Engineering University of Tennessee

Dario Dekel Chemical Engineering Technion

Dr. Tamar Zelovich NYU

Zhuoran Long Yale University

Isabella Nicotera Department of Physics Universita della Calabria

Joseph Cendagorta Data Scientist Ashland Chemicals

Ondrej Marsalek Institute of Physics Charles University, CR

Tom Markland Dept. of Chemistry Stanford University