
gpaw-tools: UI/GUI scripts for GPAW software
B. Sarikavak-Lisesivdin, S. B. Lisesivdin
Gazi University, Faculty of Science, Department of Physics, 06500 Teknikokullar, Ankara, Turkiye

GPAW is a density functional theory (DFT) code based on the Projector Augmented Wave (PAW) method written primarily in Python. It has high integration with ASE (Atomic
Simulation Environment) software and Python language. However, this high level of integrity requires knowledge of the Python language and therefore limits the number of GPAW
users worldwide. In this study, we are reporting a free cross-platform Python scripts called gpaw-tools for an end user who is not interested in the Python language itself and is
interested in pure materials science. The aim of gpaw-tools scripts are to offer user interface (UI) and Tcl/Tk based graphics user interface (GUI) software. With gpaw-tools, the end
user can calculate, view and save the elastic properties, state of density (DOS), partial DOS (PDOS), band structure, charge densities and optical properties (both RPA and BSE) of the
studied structure without knowledge of Python language. The gpaw-tools scripts are free software and distributed with MIT license.

requires Python knowledge to use

1. Introduction
Density Functional Theory (DFT) is one of the most successful methods
for calculating the electronic, structural, optical and many other
properties of one-dimensional (1D), 2D and 3D periodic atom systems
and molecules [1]. It is a widely used method as it gives accurate results
for metals, semiconductors and insulators. Due to the long history of the
DFT method [2], there are many different codes written in Fortran, most
of which are relatively old. Without a programming language knowledge
to use DFT codes, basic Linux usage and BASH command language
knowledge are required, so simpler approaches are needed to reach a
wider user base. Some graphical user interface (GUI) solutions are
presented to solve this problem [3,4]. These GUIs can generate input
files for the client-server model and then use it or run it as a command,
these input files can be processed, and the results collected and
presented.

GPAW, which is a finite difference DFT code in real space [5] based on
the projector augmented wave method (PAW) [6]. GPAW differs from
these commonly used DFT codes because it is written in mostly Python
and C programming languages. GPAW operations can be performed
powerfully with Python scripts (as a library), as commands, and even
with Jupyter [7] notebooks. In addition to the standard ground state DFT
calculations in GPAW, extensions such as time dependent DFT [8], Bethe-
Salpeter equation [9], GW approximation [10] can be performed.
However, since GPAW is primarily used as a Python library, it is important
to write a proper script and all these powerful features of GPAW can be
enjoyed simply by browsing GPAW's extensive documentation.

This proceeding reports new high-level UI/GUI scripts that can be used
to interact with GPAW to perform required calculations in a simple and
neat way. These scripts are simply called gpaw-tools and are written in
Python 3. Tkinter, the standard Python interface of the Tcl/Tk GUI toolkit,
is used for the GUI portion of the gpaw- tools.

2. Implementation
2.1. Architecture
gpaw-tools is an integration of Python scripts for simplifying interatomic
potential calculations, GPAW calculations, and some DFT related
optimizations. It also has a graphical user interface for the GPAW
calculations. The Python scripts of gpaw-tools mostly build on the
Atomic Simulation Environment (ASE) and GPAW. The pseudo-relation
between ASE, GPAW and gpaw-tools is shown in Figure 1. This is also the
logo of gpaw-tools as well. In addition to these two important software,
gpaw-tools uses As Soon As Possible (ASAP), KIM-API, kimpy and Elastic
packages for the related calculations. The relationships between the
gpaw-tools and these packages are shown in Fig. 2.

2.2. Usage
2.2.1 Interatomic Potential-based Optimization
Batch configuration of atoms must be provided in the script as a CIF file.
The universal LJ potential of Elliott and Akerson is used as a general
potential that can be used for all elements of the periodic table [11].

References
[1] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (4A) (1965) A1133 – A1138,
[2] R.O. Jones, Density functional theory: Its origins, rise to prominence, and future, Rev. Mod. Phys. 87 (3) (2015) 897 – 923,
[3] Burai v1.3.2. Available online: https://github.com/BURAI-team/burai
[4] QuantumVITAS v0.3.0. Available online: https://github.com/quantumVITAS/ quantumVITAS
[5] J.R. Chelikowsky, N. Troullier, Y. Saad, Finite-Difference-Pseudopotential Method - Electronic-Structure Calculations without a Basis, Phys. Rev.
Lett. 72 (8) (1994) 1240 – 1243,
[6] P.E. Blöchl, C.J. Först, J. Schimpl, Projector augmented wave method: ab initio molecular dynamics with full wave functions, B, Mater. Sci. 26
(1) (2003) 33 – 41,
[7] J. F. Pimentel, L. Murta, V. Braganholo and J. Freire, A Large-Scale Study About Quality and Reproducibility of Jupyter Notebooks, 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), 2019, pp. 507-517.
[8] J. Yan, J.J. Mortensen, K.W. Jacobsen, K.S. Thygesen, Linear density response function in the projector augmented wave method: Applications
to solids, surfaces, and interfaces, Phys. Rev. B 83 (2011), 245122
[9] J. Yan, K.W. Jacobsen, K.S. Thygesen, Optical properties of bulk semiconductors and graphene/boron nitride: The Bethe-Salpeter equation with
derivative discontinuity-corrected density functional energies, Phys. Rev. B 86 (2012), 045208
[10] C. Rostgaard, K.W. Jacobsen, K.S. Thygesen, Fully self-consistent GW calculations for molecules, Phys. Rev. B 81 (2010), 085103,
[11] R.S Elliott, A. Akerson, Efficient universal shifted Lennard-Jones model for all KIM API supported species, OpenKIM, v003, 2015.
[12] E.B.Tadmor, R.S. Elliott, J.P. Sethna, R.E. Miller, C.A. Becker, The potential of atomistic simulations and the Knowledgebase of Interatomic
Models, JOM 63 (2011) 17.

Figure 1, The gpaw-tools Is positioned over GPAW and ASE in terms of being user friendly and easy to learn.

Figure 2 General relationships between ASE, calculators and gpaw-tools package.

However, the full potential of the OpenKIM project can be used [12]. The
script can be called from the command line like this:

python quickoptimize.py <input file.cif>

2.2.2 Main solver script: "gpawsolve.py"
The main script gpawsolve.py can be run as a command. There is a GUI
called gg.py which uses gpawsolve.py for calculations.
Figure 3 shows a screenshot of gg.py. To use it as a system-wide program,
the user must add the gpaw-tools-main folder to the $PATH variable in the
configuration file, which is a well-known process. The program can be called
from the command line in the following ways:

gpawsolve.py –v –h –o –i <input file.py> -g <geometry

file.cif>

Multiple arguments can be passed to the program
-g, -geometry: Use CIF file as input structure

-i, -input: Use an input file for variables

(input.py).

-o, -outdir: Store all results in an output directory

with the name of the input file

-h –help: usage help.

-v –version: version information of running GPAW and

ASE code.

Since GPAW extensively uses the Message Passing Interface (MPI)
programming model for parallel execution, gpawsolve.py can also be
executed in parallel. To invoke MPI, the program can be called from the
command line with one of the commands,

mpirun -np <kernel_number> gpawsolve.py <args>

3. Conclusion
gpaw-tools is a new tool for researchers who want to reduce complexity
and improve performance when using GPAW in their work. It can also be
used for educational purposes as it offers a higher level of user interaction.

Figure 3, The GUI of gpaw-tools called gg.py in action.

For more:

https://lrgresearch.org/gpaw-tools

