

Emergent spin phenomena in the age of artificial intelligence

Trevor David Rhone

Department of Physics, Applied Physics and Astronomy,, Rensselaer Polytechnic Institute

Symposium to Honor the Life and Work of Aron Pinczuk

Aron's Early Influence - Graduate school

Aron's Early Influence - Graduate school

Opportunities and resources!

Biggest influence – Research career

- $\,\circ\,$ Emergent behavior
 - Low dimensional electron systems
 - Spin degrees of freedom
 - Charge degrees of freedom
- Data analytics and artificial intelligence
 - Molecular beam epitaxy (MBE) of graphene story
 - High-dimensional optimization problem?

4 August 1972, Volume 177, Number 4047

SCIENCE

More Is Different

Broken symmetry and the nature of the hierarchical structure of science.

P. W. Anderson

4 August 1972, Volume 177, Number 4047

More Is Different

Broken symmetry and the nature of the hierarchical structure of science.

P. W. Anderson

4 August 1972, Volume 177, Number 4047

More Is Different

Broken symmetry and the nature of the hierarchical structure of science.

P. W. Anderson

Spin properties in GaAs quantum wells

GaAs Quantum Well

2DES in a magnetic field: Classical Hall Effect

В

2DES in a magnetic field: Quantum Hall Effect

Integer Quantum Hall Effect

1. K. von Klitzing, G. Dorda, and M. Pepper.. Phys. Rev. Lett., 45(494), 1980.

2DES in a magnetic field: Fractional Quantum Hall Effect

- Exotic even-denominator state at v = 5/2
- Topologically protected?
- Implement topological quantum computation?

J. S. Xia, et. al. Phys. Rev. Lett., 93 176809 (2004)

Milli-Kelvin Spectroscopy

Spin properties of 2DES

T.D. Rhone et al, PRL 106, 196805 (2011)

Synthesis of graphene by molecular beam epitaxy

- Grow graphene
- High-dimensional parameter space:
 - Substrate temperature
 - Partial pressure of Argon
 - Target temperature
 - Annealing temp.
 - Annealing time
- Measure quality of grown material

Aron the Influencer – Recently

Harvard University

Rensselaer Polytechnic Institute

Two-dimensional Magnetic Materials

Huang et al., Nature **546**, 270 (2017)

Gong et al., Nature 546, 265 (2017)

Data-driven study of 2D materials?

Data-driven study of 2D magnetic materials

Motivation:

- 1. Materials discovery
 - 2D magnetic materials
 - Chemical stability
- 2. Knowledge discovery
 - Magnetic properties of 2D materials

Discover novel magnetic 2D materials using materials informatics

Data-driven study of 2D magnetic materials Materials Informatics

Materials science + Artificial intelligence

Why use artificial intelligence to study materials?

 \odot Materials search space is huge

- ICSD (inorganic crystal structure database)
 - 200,000 inorganic compounds
- Chemical Abstracts Service
 - 49,037,297 organic/inorganic entries
- Virtual Chemistry Space¹
 - $\sim 10^{100}$ candidates for materials
- First principles calculations are expensive

 \odot Experiments are slow and expensive

Crystal structure and materials properties

• Structure-property relationships:

\odot The rise of the materials databases

- Data are accessible
- \odot Chemical space descriptors exist
 - Coulomb Kernel¹, Bag of bonds representation²
- \odot Datascience tools exist
 - Scikit learn, Google's TensorFlow

Magnetic 2D crystals

Magnetic 2D crystals

Transition metal trichalcogenides are magnetic 2D atomic crystals

- CrGeTe₃ is a ferromagnet
 (FM)^{1,2}
- Monolayer CrSiTe₃
 is a zigzag
 antiferromagnet
 (zigzag-AFM)¹

1. Sivadas et al., PRB 91 235425 (2015) 2. C. Gong et al., Nature 546, 265 (2017)

Magnetic 2D crystals

Transition metal trichalcogenides are magnetic 2D atomic crystals

1. Sivadas et al., PRB 91 235425 (2015) 2. C. Gong et al., Nature 546, 265 (2017)

Magnetic van der Waals materials

$A_2B_2X_6$ structures

- Create 198 ABX₃ structures using DFT
 - Total # of structures ${\sim}10^4$
 - NM, FM and AFM spin configurations
- \odot Extract data:
 - Formation energy
 - Magnetic order
 - Magnetic moment

Magnetic van der Waals materials

 $A_2B_2X_6$ structures

Substitutions:

- \circ A site:
 - $Cr_{0.5}A_{0.5}$
 - A: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Nb, Ru

 \circ B site:

- Si, Ge, P combinations
- B: Si, Ge, P, Si_{0.5}Ge_{0.5}, Si_{0.5}P_{0.5}, Ge_{0.5}P_{0.5}

 \odot X site:

• S, Se, Te

Magnetic van der Waals materials

 $A_2B_2X_6$ structures

Formation energy of A₂B₂X₆

Artificial intelligence in materials science Materials descriptors

- Describe system using easily attainable components
 - Atomic properties, p
- Compound Property, P
 - P = mean(*p*(A), *p*(B), *p*(X))
 - P = std. deviation(p(A), p(B), p(X))
- Total # of descriptors:
 - 61

- Atomic property, *p*:
 - Number of spin up e's
 - atomic radius
 - etc.
Machine learning models

- Random forest regression
 - Machine learning model
- \circ Inputs: X
 - Number of spin up e's
- Output: Y
 - Magnetic moment
- \circ Training data
- Test data
- Node m, region R_m, N_m observations
- Mean Absolute Error
 - minimize L1 error using median values at terminal nodes

Machine learning predictions Magnetic moment, X=Te

- N = 262
- Random forest $R^2 = 0.98$
- Mean absolute error (MAE) = 0.30 $\mu_{\rm B}$

DFT: first-principles quantum calculations μ : magnetic moment ~ magnetization

Machine learning predictions of DFT formation energy

Random Forests

Rhone, *et al., Sci Rep* **10,** 15795 (2020).

Machine learning predictions of DFT formation energy

Rhone, *et al., Sci Rep* **10,** 15795 (2020).

Machine learning results

Candidates for chemically stable 2D ferromagnets

Initial DFT data (198 structures)
ML predictions (> 4000 structures)

Screening Criteria:

• Magnetic moment > 5 μ_B & Formation energy < -1.1eV

DFT results: MI \circ (CrMn)Si₂Te₆ \circ (CrMn)Ge₂Se₆ \circ (CrFe)(SiP)S₆

 $\begin{array}{l} \text{ML Results:} \\ \circ \ (CrMo)Si_2Te_6 \\ \circ \ (CrW)Si_2Te_6 \\ \circ \ (CrMo)(SiP)Te_6 \end{array}$

Rhone, et al., Sci Rep 10, 15795 (2020).

Al-guided materials discovery Outcomes

- $\,\circ\,$ Identified new chemically stable 2D ferromagnets
- $\,\circ\,$ AI provides fast estimates of 2D materials' properties
 - > 4000 $A_2B_2X_6$ composites
 - Magnetic properties
 - Chemical stability
- Non-traditional framework for studying emergent spin phenomena in 2D materials

Summary

- Aron's invaluable guidance shaped the lives and careers of many
- A collection of people, under the right conditions, can give rise to 'emergent phenomena'
- Al-guided identification of emergent spin phenomena in materials

Acknowledgements

- This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562
- Some of the computations in this paper were run on the Odyssey cluster supported by the FAS Division of Science, Research Computing Group at Harvard University
- This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
- This material is based upon work supported by the National Science Foundation CAREER award under Grant No 2044842

Aron's Early Influence – Postdoctoral studies

Postdoc at NTT, Japan

Charge properties of electrons in GaAs quantum wells

NMR probes Wigner Solids: *In-plane local density variations at v* ~ 2

v > 2

NMR profiling of quantum electron solids in high magnetic fields

nature

1) L. Tiemann^(*), T.D. Rhone^(*), N. Shibata, K. Muraki, Nature Physics, doi:10.1038/nphys3031 (*: equal contribution)

Simulating RD-NMR Spectra

Materials descriptors: data visualization

• Compound Property, P

• P = f(p(A), p(B), p(X)))

 $\circ p$:

- Enthalpy
- Polarizability (dipole_std)
- Ionization energy (std_ion)
- # valence electrons (nvalence_avg)

Quantum Well

What is Materials Informatics?

Teaching computers materials science using machine learning!

NMR probes Wigner Solids: *In-plane local density variations at v* ~ 2

 L. Tiemann^(*), T.D. Rhone^(*), N. Shibata, K. Muraki, Nature Physics, doi:10.1038/nphys3031 (*: equal contribution)

Dataset: Transition Metal Dichalcogenides (TMDs)

Rasmussen et. al., J. Phys. Chem. C 2015, 119, 13469-13183

Dataset: Transition Metal Dichalcogenides (TMDs)

Heat of Formation of TMDs

Data visualization: TMDs

MX₂ materials 'features' • Atomic properties:

- $\Delta x = x(M) x(X)$
- O X:
 - Polarizability
 - Ionization energy
 - Covalent radius
 - electronegativity

Machine Learning models

- Linear regression is a type of machine learning model
- \circ Inputs: X
 - Dipole polarizability of A, B
- Output: Y
 - Heat of formation
- \circ Training data
- \circ Test data
- $\,\circ\,$ Algorithm estimates m & c
 - Reduce test error
 - min{ $\sum_i (y_i \widehat{y}_i)^2$ }

Machine learning TMD data to predict stability

Machine learning TMD data to predict stability

Heat of formation of Boron Nitride

o Predicted value: -2eV
o Expected value: -1.56eV

Machine Learning models: Kernel ridge regression

• # data points = 89

$$egin{aligned} C &= rac{1}{2} \sum_i (y_i - \mathbf{w}^T \mathbf{x}_i)^2 \ &+ rac{1}{2} \lambda ||\mathbf{w}||^2 \end{aligned}$$

Test score,	$R^{2} =$	0.94
Train score,	$R^{2} =$	0.99

Machine learning predictions Magnetic moment, X=Te

- N = 262
- \circ Random forest R² = 0.98
- Mean absolute error (MAE) = 0.30 $\mu_{\rm B}$

DFT: first-principles quantum calculations μ : magnetic moment ~ magnetization

Machine learning predictions Magnetic moment, X=Te

Machine Learning models: Kernel ridge regression *Overfitting*

Machine Learning models: Random forest regression

Random forest regression is based on decision trees

• # data points = 89

Test score, MSE = 0.095

Random Forest model and Decision Trees

Is a customer at a company likely to buy a computer or not?

Machine Learning models: Random forest regression *Feature Importances*

Machine Learning models Challenges

- 1. Can our ML models generalize to other 2D materials?
- 2. Are our descriptors sufficient?
- 3. Develop descriptors to describe crystal structure?

Top ten descriptors

- 1 Dipole dif
- 2 Dif in ionization E
- 3 atomic radius avg
- . num valence dif
- . atomic vol dif
- e_negativity avg covalent rad avg vdw radius dif dipole avg
- 10 covalent rad dif

Summary

\circ Materials informatics

- Identified and exploited trends in materials' properties data for vdW materials
- Predicted heat of formation of TMDs

 Materials databases + access to machine learning tools makes materials informatics possible

Outlook

Discovery of new 2D materials?
 Tailor 2D materials to have desired properties?

 Use statistical inference to guide the discovery of new physics?

Outlook

 \circ Academic research

- Universities
- Materials Project (Materials Genome Initiative)
- NIMS

 \circ Industry

- Citrine
- Google
- Applications:
 - Photovoltaics
 - Thermoelectrics
 - ✤Organic LEDs
 - Magnetocalorics

2DES in a magnetic field: Integer Quantum Hall Effect

Integer Quantum Hall Effect

Fractional Quantum Hall Effect

I. K. von Klitzing, G. Dorda, and M. Pepper. New method for highaccuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett., 45(494), 1980.

2. D.C. Tsui, H.L. Stormer, and A.C. Gossard. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 48 (1559), 1982.

Emergent Quasiparticles: Composite Fermions

J.K. Jain. Composite Fermions. Cambridge University Press, 1st edition, 2007.

Spin properties of 2DES

T.D. Rhone et al, PRL 106, 196805 (2011)

Resistively detected NMR (RDNMR) as a Local Density Probe

Resistively Detected NMR (RD-NMR)

VOLUME 88, NUMBER 17 PHYSICAL REVIEW LETTERS 29 April 2002

Electrically Controlled Nuclear Spin Polarization and Relaxation by Quantum-Hall States

(a) 6.5 - 140 mK $\tau = 30 \text{ s}$ ΔR_{xx} 6.0 R_{xx} [kΩ] ····+ ΔR_{xx} [kΩ] 5.5 5.0 $\tau [\times 10^2 \text{ s}]$ 200 10 20 0 Time [$\times 10^2$ s] (b) 340 mK 4.30 [7] X^X 4.20-⁶⁹Ga ''Ga ┱╎╎᠇᠇᠇᠇᠇᠇᠇ᡳ᠋╎╎᠇᠇᠇᠇᠇᠇᠇ 42.30 42.35 59.30 59.35 75.35 75.40 Frequency [MHz]

K. Hashimoto,^{1,2,*} K. Muraki,¹ T. Saku,¹ and Y. Hirayama^{1,2}

$$E_z = g\mu_B(B_0 + b_n < I_z >)$$

 $\Delta E_z \propto \Delta < I_z >$

if $\Delta R_{xx} \propto \Delta E_z$, then $\Delta R_{xx} \propto \Delta < I_z >$

only applicable to those states with:

- sensitivity to ΔE_z
- finite R_{xx}

Resistively Detected NMR (RD-NMR)

$$E_z = g\mu_B(B_0 + b_n < I_z >)$$

 $\Delta E_z \propto \Delta < I_z >$

if $\Delta R_{xx} \propto \Delta E_z$, then $\Delta R_{xx} \propto \Delta < I_z >$

only applicable to those states with:

- sensitivity to ΔE_z
- finite R_{xx}

Our Method: Modified RD-NMR

 $\label{eq:keyidea:} \frac{\textit{Key idea:}}{\textit{Use gate voltage to go to a different}} \\ \text{filling factor } \nu_{\text{read}} \text{ for the readout} \\$

Detect resonant rf absorption at ν as a change in R_{xx} at ν_{read}

- Nuclear spins interact with electron spins at $v_{read}=2/3$
- R_{xx} at v_{read} can be used to measure spin degrees of freedom

NMR Line Shape

- For P > 0, NMR line shape \cong mirror image of local density histogram
- spectral mapping of subband wavefunction

NMR probes Wigner Solids: *In-plane local density variations at v* ~ 2

 L. Tiemann^(*), T.D. Rhone^(*), N. Shibata, K. Muraki, Nature Physics, doi:10.1038/nphys3031 (*: equal contribution)

"I Keep Six Honest Serving Men ..."

I keep six honest serving-men (They taught me all I knew); Their names are What and Why and When And How and Where and Who...

by Rudyard Kipling

Crystal structure and materials properties

 \odot Structure-property relationships:

Boron Nitride

Total set of descriptors

1 num p 2 num d 3 num f 4 atomic rad 5 atomic vol 6 covalent rad 7 dipole 8 eaffinity 9 num electrons 10 atomic_rad_avg 11 atomic rad max dif 12 atomic rad sum dif 13 atomic rad std dif 14 atomic rad std 15 atomic vol avg 16 atomic vol max dif 17 atomic vol sum dif 18 atomic vol std dif 19 atomic vol std 20 covalentrad avg

21 covalentrad max dif 22 covalentrad sum dif 23 covalentrad std dif 24 covalentrad std 25 dipole avg 26 dipole max dif 27 dipole sum dif 28 dipole std dif 29 dipole std 30 numelectron avg 31 numelectron max dif 32 numelectron sum dif 33 numelectron std dif 34 numelectron std 35 vdwradius avg 36 vdwradius max dif 37 vdwradius sum dif 38 vdwradius std dif 39 vdwradius std 40 e negativity avg

41 e negativity max dif 42 e negativity sum dif 43 e negativity std dif 44 e negativity std 45 nvalence avg 46 nvalence_max_dif 47 nvalence sum dif 48 nvalence std dif 49 nvalence std 50 lastsubshell avg 51 cmpd skew p 52 cmpd skew d 53 cmpd skew f 54 cmpd sigma p

55 atomE_AB 56 frac_f 57 std_ion 58 cmpd_sigma_d 59 cmpd_sigma_f 60 sum_ion 61 mean_ion

Reduced set of descriptors

1 covalentrad max dif 2 hardness var 3 hardness mean 4 covalentrad avg 5 sum ion 6 Nup mean 7 Nup var 8 atomic_rad_std_dif 9 atomic vol avg 10 atomic_vol_max_dif

11 nvalence std dif 12 dipole std 13 covalentrad std dif 14 dipole max dif 15 nvalence sum dif 16 atomic vol std dif 17 nvalence max_dif 18 atomic_vol_sum_dif 19 nvalence std 20 nvalence avg

Extra forest regression: Feature extraction

Feature Importance Ranking:

- 1. Ionization energy dif.
- 2. # valence electrons avg.
- 3. Atomic radius dif.
- 4. Dipole polarizability dif
- 5. Num of electrons avg.
- 6. Atomic volume avg
- 7. Covalent radius dif
- 8. Atom E_AB
- Dipole poarizability avg
 10.Ionization energy sum
- 11.# of valence electrons dif

Test score vs training set size

 You are an alchemist living in ancient Greece
 You have a small random set of

elements

What is a good descriptor?
What are trends in the data?

 \circ Descriptor:

Atomic number

• Apply a model:

 Sort atomic numbers

○ Descriptor:

• Atomic number

• Apply a model:

 Sort atomic numbers

 \odot Descriptor:

- Atomic number
- Apply a model:
 - Sort atomic numbers

1 IA 1A 1 Hydrogen 1.008 3 Li	2 IIA 2A 4 Be					Perio	odic T	able	of the	e Eler	nents	13 111A 3A 5 B	14 IVA 4A 6 C	15 VA 5A 7 N	16 VIA 6A 8 0	17 VIIA 7A 9 F	18 VIIIA 8A 2 He Helium 4.003 10 Ne
Lithium 6.941 11 Na Sodium 22.990	Beryllium 9.012 12 Mg Magnesium 24.305	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	9 	10	11 IB 1B	12 IIB 2B	Boron 10.811 13 Aluminum 26.982	Carbon 12.011 14 Silicon 28.086	Nitrogen 14.007	Oxygen 15.999 16 Sulfur 32.066	Fluorine 18.998 17 Cl Chlorine 35.453	Neon 20.180 18 Argon 39.948
19 K Potassium	Ca Ca Calcium	Scandium	22 Ti Titanium	23 V Vanadium	Chromium	25 Mn Manganese 54 929	26 Fe	Cobalt 58 033	28 Ni Nickel 58.603	29 Cu Copper 63.546	30 Zn Zinc 65 39	Gallium	Germanium	Arsenic 74 922	34 Se Selenium 78.971	35 Br Bromine 79.904	S6 Kr Krypton 84 798
37 Rb Rubidium 84,468	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niobium 92.906	42 Mo Molybdenum 95.95	43 Tc Technetium 98.907	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.906	46 Pd Palladium 106,42	47 Ag 5ilver 107.868	48 Cd Cadmium 112.411	49 In Indium 114.818	50 Sn 118.711	51 Sb Antimony 121.760	52 Tellurium 127.6	53	54 Xe 131.294
55 Cs Cesium 132.905	56 Ba Barium 137.328	57-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.84	75 Re Rhenium 186.207	76 Os osmium 190.23	77 Ir Iridium 192.217	78 Pt Platinum 195.085	79 Au Gold 196.967	80 Hg Mercury 200.592	81 TI Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 Polonium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.018
87 Fr Francium 223.020	88 Ra Radium 226.025	89-103	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266]	107 Bh Bohrium [264]	108 Hs Hassium [269]	109 Mt Meitnerium [268]	110 Ds Darmstadtium [269]	111 Rg Roentgenium [272]	Copernicium [277]	113 Ununtrium unknown	114 Fl Flerovium [289]	115 Ununpentium unknown	116 LV Livermorium [298]	117 Uus Ununseptium unknown	118 Uuuo Ununoctium unknown
	Lanth Ser Actir Ser	anide les 227 hide Action 227	aanum 140 000 000 000 000 000 000 000 000 000	59 Praze 14 Th 2.038	Pr 800 0.908 800 1.44 Pa 92 Urai 2.38	Id ⁶¹ Prom 243 ⁹³ J Nium 029 ⁹³ N Nepti 237	m 62 Sam 15 94 Plut 048	anium 0.36 63 Eurr 15 Pu 4.064 95 Arms 24:	Eu 64 Gade 1.964 15 96 Cu 3.061 243	65 ad binium 15 15 15 15 15 15 15 15 15 15	rbium 8.925 66 Dyspr 162 98 Sk kelium 7.070 251	by 67 Hote 500 164 Cff 299 Cff Einst [2	68 Fer 16 100 54 100 Fer 16 100 Fer 154 100 Fer 100	Er 59 Thum 7.259 169 Thu 169 101 Mende 7.095	m ilum 1934 70 Ytte 173 102 102 102 Not 86.1 256	71 Lut 172 103 100 101 Lut 173 103 Lut 174 Lut 175 Lut	-U etium 1.967 - Г enclum 162]

Machine Learning for Materials studies

Inorganic Crystal Structure Database

Machine Learning for Materials studies

- Kitchen sink method:
 - Use statistical analysis to learn relevant descriptors
- Domain knowledge:
 - Construct features that are important for describing a system
- \circ Example:
 - Ionic compounds have atoms in different columns of periodic table
 - Descriptor: column # of the periodic table

Machine Learning for Materials studies

