# Accurate structural optimizations in solids with auxiliary-field quantum Monte Carlo



## Abstract

Structural optimization by accurate, non-perturbative metho outstanding challenge in many-body electronic structure co We present direct computation of forces and stresses in solids by planewave AFQMC. With them, we perform full structural optimizations in several solids. Additionally, we propose a general optimization algorithm, FSSD×SET, for gradients which have intrinsic stochastic noise. This algorithm is found to outperform standard optimization methods and several machine learning algorithms in efficiency and robustness.

## Auxiliary-field QMC

AFQMC<sup>[1-3]</sup> approaches the ground state of a system with imaginary time propagation  $e^{-\beta H} |\Psi_I\rangle \rightarrow |\Psi_{GS}\rangle$ . With the introduction of auxiliary fields, two-body propagations transform into integrals of one-body propagations, and can be sampled with a random walk.



AFQMC has demonstrated excellent accuracy in lattice models, molecules, and solids.



Siyuan Chen<sup>\*,1,2</sup> and Shiwei Zhang<sup>2,1</sup> <sup>1</sup>College of William & Mary, <sup>2</sup>Flatiron Institute

## Forces and Stresses

| ods has been an |  |  |  |  |  |
|-----------------|--|--|--|--|--|
| omputations.    |  |  |  |  |  |

## ③ average over all walkers to estimate $\Psi_n$

- Loop ②,③ until convergence.

| Computation of forces is a                  | ı kin       | d of " | holy grail" in QMC. We present forces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and stresses computed<br>directly from BP + |             | 0.04   | Force $0.002 - F_{direct} - F_$ |
| Hellmann-Feynman in                         | Bohi        | 0.02   | -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| plane-wave AFQMC <sup>[5]</sup> .           | ce [Ry/     | 0.00   | -0.16 -0.08 0.00 0.08 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                             | For         | -0.02  | Fitted energy derivative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Here we compare:                            |             | -0.04  | Direct calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 directly computed                         |             |        | -0.15 - 0.10 - 0.05 0.00 0.05 0.10 0.15<br>$x - x_0$ [Bohr]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| force/stress                                |             | 300 ·  | <b>Diagonal</b> <sup>25</sup> Tr( $\sigma_{\text{direct}} - \sigma_{\text{fit}}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ② fitting AFQMC                             | <b>لی</b>   | 200 -  | stress 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| equation-of-state                           | [kba        | 100 ·  | -25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| and obtaining its                           | $r(\sigma)$ | 0 •    | 10.05 10.15 10.25 10.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| derivative                                  |             | -100 · | Fitted energy derivative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                             |             | 100    | $\mathbf{\Phi}$ Direct calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Excellent agreement  $\rightarrow$ 

# FSSD×SET

AFQMC forces/stresses contain statistical uncertainty. What's the best way to perform structural optimizations in the presence of noisy forces?

We propose a new algorithm called FSSD×SET (*arXiv:2204.12074*<sup>[6]</sup>):

**Update rule** "Fixed Step-size Steepest Descent" (FSSD),

-200

**Scheduling workflow** "Staged error targeting" (SET).

FSSD outperforms several common machine learning algorithms, while SET provides an additional boost.





## Structural Optimization with AFQMC

With AFQMC forces/stresses and our new optimization algorithm, we perform two direct AFQMC structural optimizations<sup>[5]</sup>.

**1** Atom-geometry optimization: Si (diamond  $\rightarrow \beta$ -tin)





6. S. Chen and S. Zhang, arXiv:2204.12074 (2022).