# Accurate structural optimizations in solids with auxiliary-field quantum Monte Carlo



## Abstract

Structural optimization by accurate, non-perturbative metho outstanding challenge in many-body electronic structure co We present direct computation of forces and stresses in solids by planewave AFQMC. With them, we perform full structural optimizations in several solids. Additionally, we propose a general optimization algorithm, FSSD×SET, for gradients which have intrinsic stochastic noise. This algorithm is found to outperform standard optimization methods and several machine learning algorithms in efficiency and robustness.

## Auxiliary-field QMC

AFQMC<sup>[1-3]</sup> approaches the ground state of a system with imaginary time propagation  $e^{-\beta H} |\Psi_I\rangle \rightarrow |\Psi_{GS}\rangle$ . With the introduction of auxiliary fields, two-body propagations transform into integrals of one-body propagations, and can be sampled with a random walk.



AFQMC has demonstrated excellent accuracy in lattice models, molecules, and solids.



Siyuan Chen<sup>\*,1,2</sup> and Shiwei Zhang<sup>2,1</sup> <sup>1</sup>College of William & Mary, <sup>2</sup>Flatiron Institute

## Forces and Stresses

| ods has been an |  |  |  |  |  |
|-----------------|--|--|--|--|--|
| omputations.    |  |  |  |  |  |

## ③ average over all walkers to estimate $\Psi_n$

- Loop ②,③ until convergence.

| Computation of forces is a and stresses computed | kin          | d of "ł | noly grail" in QMC. We present forces                                    |           |                                                                                      |         |         |         |         |         |         |      |                           |
|--------------------------------------------------|--------------|---------|--------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|------|---------------------------|
| directly from BP +                               | ٢]           | 0.04    | Force $0.002 - F_{\text{direct}} - F_{\text{fi}}$                        |           |                                                                                      |         |         |         |         |         |         |      |                           |
| Hellmann-Feynman in                              | /Boh         | 0.02    | -0.001                                                                   |           |                                                                                      |         |         |         |         |         |         |      |                           |
| plane-wave AFQMC <sup>[5]</sup> .                | ce [Ry/      | ce [Ry/ | ce [Ry/                                                                  | ce [Ry/   | ce [Ry/                                                                              | ce [Ry/ | ce [Ry/ | ce [Ry/ | ce [Ry/ | ce [Ry/ | ce [Ry/ | 0.00 | -0.16 -0.08 0.00 0.08 0.1 |
|                                                  | Foi          | -0.02   | Fitted energy derivative                                                 |           |                                                                                      |         |         |         |         |         |         |      |                           |
| Here we compare:                                 |              | -0.04 - | Direct calculation                                                       |           |                                                                                      |         |         |         |         |         |         |      |                           |
| 1 directly computed                              |              |         | -0.15 - 0.10 - 0.05 0.00 0.05 0.10 0.15<br>$x - x_0$ [Bohr]              |           |                                                                                      |         |         |         |         |         |         |      |                           |
| force/stress                                     | Tr(σ) [kbar] | [kbar]  |                                                                          | 300 -     | <b>Diagonal</b> $25 \operatorname{Tr}(\sigma_{\text{direct}} - \sigma_{\text{fit}})$ |         |         |         |         |         |         |      |                           |
| ② fitting AFQMC                                  |              |         | 200 -                                                                    | stress 0  |                                                                                      |         |         |         |         |         |         |      |                           |
| equation-of-state                                |              |         | 100 -                                                                    | ◆ -25 - I |                                                                                      |         |         |         |         |         |         |      |                           |
| and obtaining its                                |              | 0 -     | 10.05 10.15 10.25 10.35                                                  |           |                                                                                      |         |         |         |         |         |         |      |                           |
| derivative                                       | T            | -100 -  | <ul> <li>Fitted energy derivative</li> <li>Direct calculation</li> </ul> |           |                                                                                      |         |         |         |         |         |         |      |                           |
|                                                  |              |         | $\Phi$ Direct calculation $\Phi$                                         |           |                                                                                      |         |         |         |         |         |         |      |                           |

Excellent agreement  $\rightarrow$ 

# FSSD×SET

AFQMC forces/stresses contain statistical uncertainty. What's the best way to perform structural optimizations in the presence of noisy forces?

We propose a new algorithm called FSSD×SET (*arXiv:2204.12074* <sup>[6]</sup>):

**Update rule** "Fixed Step-size Steepest Descent" (FSSD),

-200

**Scheduling workflow** "Staged error targeting" (SET).

FSSD outperforms several common machine learning algorithms, while SET provides an additional boost.





## Structural Optimization with AFQMC

With AFQMC forces/stresses and our new optimization algorithm, we perform two direct AFQMC structural optimizations<sup>[5]</sup>.

**1** Atom-geometry optimization: Si (diamond  $\rightarrow \beta$ -tin)





6. S. Chen and S. Zhang, arXiv:2204.12074 (2022).