Density functional theory and quantum embedding studies of Er³⁺ in WS₂

Gabriel I. López-Morales,^{a,b,c} Alexander Hampel,^d Vinod M. Menon,^{a,c} Gustavo E. López,^{b,c} Cyrus Dreyer,^{d,e} Johannes Flick,^d Carlos A. Meriles,^{a,c}

^aDepartment of Physics, City College of the City University of New York, New York, NY 10031, USA; ^bDepartment of Chemistry, Lehman College of the City University of New York, Bronx, NY 10468, USA; ^cThe Graduate Center of the City University of New York, New York, NY 10016, USA; ^dCenter for Computational Quantum Physics, Flatiron Institute, New York, NY 10010, USA; ^eDepartment of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA

Figure 1. Summarized DFT results for Er^{3+} , Er_w and V_w in WS_2 . **TOP**: (a) atomic structure for Er_w^- , (b) charge-state transition energies for Er_w , band structure (c) without SOC, (d) including SOC, (e) including SOC within DFT+U (U = 2.5 eV). **BOTTOM**: (a) charge density of relevant defect states (as labeled), absorption spectra at two levels of approximation for (b) Er_w^- , (c) V_w^- , transition dipole moment and oscillator strengths for (d) isolated Er^{3+} , (e) V_w^- , (f) Er_w^- .

Figure 2. Embedding/quantum chemistry results for Er³⁺. **LEFT**: (spinless) orbitals contained within active space, as obtained from W90 within VASP. Excitation energies and multireference character of MB states obatained from \mathcal{H}_{eff} through FCI. **RIGHT**: orbitals and MB occupations in the active space from constrained active space self-consistent field (CASSCF) and excitation energies via FCI, both within BAGEL.

References

[1] M. Le Dantec, M. Rančić, S. Lin, E. Billaud, V. Ranjan, D. Flanigan, S. Bertaina, T. Chanelière, P. Goldner, A. Erb, et. al., Sci. Adv. 7, eabj9786 (2021).

[2] J. Hostaša, L. Esposito, A. Malchère, T. Epicier, A. Pirri, M. Vannini, G. Toci, E. Cavalli, A. Yoshikawa, M. Guzik, Journal of Materials Research 29, 2288 (2014).

[3] M. Wu, Y. Xiao, Y. Zeng, Y. Zhou, X. Zeng, L. Zhang, W. Liao, InfoMat. 3, 362 (2021).

[4] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (16), 11169 (1996).

[5] L. Muechler, D. I. Badrtdinov, A.Hampel, J. Cano, M. Rösner, C. E. Dreyer, arXiv:2105.08705v2 (2021).

Summary / Outlook

Excitation energies for Er³⁺ in good agreement with experiment from FCI via \mathcal{H}_{eff}

- ► \mathcal{H}_{eff} could be further improve by explicit inclusion of SOC terms (not from U_{ijkl})
- Methods to be extended for the full Er:WS₂ case to calculate excitation energies; MB states
- Quantum embedding may offer a promising description of RE impurities in semiconductors

Center for Computational

Quantum Physics

