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INTRODUCTION

• Palladium and its oxides are important catalysts in many

catalytic reactions with diversity of technological

applications.

• The only thoroughly scientifically studied and

technologically exploited palladium oxide is PdO.

• Formation of one PdO2 polymorph was observed under

elevated hydrostatic pressure and temperature and rutile

structure was proposed [1,2].

• We focus on theoretical prediction of stable PdO2

polymorphs and impact of pressure and temperature on

their stability using Density Functional Theory modelling.

• We model PdO2 in 19 crystal structures observed for

dioxides of transition metals.

• All PdO2 models were fully optimized at six pressure

points: 0, 20, 40, 60, 80 and 100 kbar.
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ENTHALPY OF FORMATION

METHODS

• DFT calculations were performed in program VASP[3].

• All models were fully optimized using DFT GGA PBEsol

functional and hybrid DFT HSE06 functional. Plane-wave

cut-off was set to 700 eV and k-mesh spacing to 0.2 Å-1.

• Lattice dynamics was calculated for 2x2x4 supercells using

direct phonon method and quasiharmonic approximation as

implemented in the program PHONOPY [6].

• Visualization of crystal structures was done in VESTA[4].

CRYSTAL STRUCTURES OF OPTIMIZED MODELS

Rutile group Fluorite group

Layered structures: AAAA and ABAB stacking
Post-rutile group

CONCLUSIONS

• All 19 PdO2 models are stable relative to Pd+O2 and 13

structures are stable in respect to PdO in the pressure range

0-100 kbar.

• The lowest-E structure at zero pressure is predicted to be

MnO2 type at hybrid DFT level (VO2 type at standard

DFT).

• Rutile type structure (claimed by experiment) is 10th in

energy and dynamically unstable at all pressures, while all

models that are energy-preferred over rutile structure are

dynamically stable.

• Increase of the electronic temperature via smearing,

stabilizes tetragonal rutile type.

• At low temperatures structural transformation from

tetragonal to orthorhombic rutile occurs through a B1g soft

mode that relaxes the very short d1(O-O) distance that

seems to be the key parameter that drives the phase

transition.
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Rutile:
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Phonon dispersion curves (DFT results)

• Tetragonal rutile is dynamically unstable at all pressures.

• Orthorhombic rutile predicted to be dynamically stable.

Type: VO2

Type: VO2 (aP12)

tetragonal rutile orthorhombic rutile (CaCl2 tp)

HIGH PRESSURE REGIME
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Rutile structures: geometry analysis (hybrid DFT results)

d2 = 3.064 Å
d1 = 2.417 Å

d3 = 2.752 Å
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• At zero pressure, the lowest

energy type is VO2 in DFT, while

the hybrid DFT method predicts

that the energetically preferred type

is MnO2.

• Both standard and hybrid DFT

predict orthorhombic rutile type

structure to be preferred at

elevated pressure above 20 kbar

(DFT) and 50 kbar (hybrid DFT).

• In both methods, tetragonal rutile

structure is disfavoured at all

pressures.
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• In the tetragonal rutile type

structure, the d1(O-O) distance is

considerably shorter than the

typical distance between O2- anions

(2.8 Å).

• Orthorhombic distortion relaxes the

very short d1(O-O) distance.

• The d1(O-O) length remains longer

in the orthorhombic rutile than in

tetragonal rutile at all pressures up

to 100 kbar.

• The relaxation of the d1(O-O)

distance seems to be the key

parameter that drives the phase

transition from the tetragonal to the

orthorhombic rutil type structure in

PdO2 at low temperatures.

EFFECT OF TEMPERATURE 

via smearing of Fermi surface

DFT results

Lattice parameters vs. pressure

DFT results Hybrid DFT results

σ = 0.5 eV σ = 1 eV σ = 1.5 eVB1gB1g
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• The increasing Gaussian occupancy smearing

width σ (0.02-1.6 eV) in standard DFT method

dramatically affects lattice dynamics of PdO2 in

rutile type structure.

• For σ ≥ 1.5 eV the tetragonal rutile type

structure becomes stable.

• For σ < 1.5 eV rutile type PdO2 becomes

unstable in respect to B1g mode that lowers the

tetragonal symmetry to orthorhombic rutile.
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