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Abstract: Stable, scalable, and reliable quantum information science (QIS) is poised to revolutionize human well-being through quantum computation, communication and sensing. Here, | show our recent development on first-principles computational platforms to study quantum coherence and
optical readout as critical processes in QIS in solid-state materials, by combining first-principles many-body theory and open quantum dynamics. First, we show how we reliably predict energetics, electronic and optical properties of spin defects and their host two-dimensional(2D) materials from
first-principles many-body theory, which accurately describes highly anisotropic dielectric screening and strong many-body interactions. In particular, we show how we identify the chemical composition of single photon emitters in hexagonal boron nitride and 2D magnet NiPS; by computing
optical transitions, radiative and nonradiative as well as intersystem crossing kinetic rates with strong exciton-defect couplings from first-principles. Next, we introduce our recently developed real-time density-matrix dynamics approach with first-principles electron-electron, electron-phonon,
electron-impurity scatterings and self-consistent spin-orbit coupling, which can accurately predict spin and carrier lifetime and pump-probe Kerr-rotation signatures for general solids. As an example, we will show our theoretical prediction on Dirac materials under electric field with extremely
long spin lifetime and spin diffusion length and spin relaxation in bulk halide perovskite. This theoretical and computational development is critical for designing new materials promising in quantum-information science, spintronics, and valleytronics applications.
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Ab-initio Density-Matrix Dynamics Spin Relaxation in Lead Halide Perovskites
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Real-time Dynamics and Density Matrix Evolution8'2 Graphene on a clean hBN substrate Perovskite spintronics recently attract strong interests
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