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Numerical atom-centered orbitals
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Introduction Proof-of-principle demonstrations
RESEARCH GOALS:
Accurate modeling of key processes for solar-to-fuel conversions, such as proton-coupled electron transfer in complex heterogeneous
environments, requires the quantization of protons in electronic structure calculations. The nuclear-electronic orbital (NEO) method is a well-
established approach for treating nuclei quantum mechanically in molecular systems beyond the usual Born-Oppenheimer approximation. This
work further develops the NEO method for periodic electronic structure calculations, in the context of multicomponent density functional theory
(DFT).
The NEO-DFT method is implemented in
an all-electron electronic structure code,
FHI-aims, using a combination of analytical
and numerical integration techniques as
well as a resolution of the identity scheme
to enhance computational efficiency.
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Coupled SCF procedure

Electron-proton Kohn-Sham equations
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Electron: k-points sampling

Proton: Γ-point approximation
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Effective potential
Electron terms 

Proton terms 

NEO Multicomponent DFT formalism
𝐸 𝜌<, 𝜌B = 𝐸<>? 𝜌<, 𝜌B + 𝐸C<= 𝜌<, 𝜌B + 𝐸<>A 𝜌< + 𝐸B>A 𝜌B + 𝐸<BA 𝜌<, 𝜌B Electron exchange-correlation functional

Within the NEO framework, the electron−electron
exchange-correlation functional is defined identically to
the conventional electronic functionals. Any electronic
XC functional can be used in NEO calculations.

Proton exchange-correlation functional
In most cases, exchange and correlation effects among
protons are negligibly small. The proton-proton
correlation functional is approximated with the
Hartree−Fock exchange. In practice, one can even use
only the diagonal terms of the exchange matrix, which
counteracts self-interaction.
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Electron-proton correlation functional
Several electron−proton correlation functionals based
on a multicomponent extension of the Colle−Salvetti
formalism have been developed. In this work, a local
density approximation (LDA) type of functional, epc17,
is used
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• Analytical & numerical atomic integrals:
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• Resolution of identity (Density fitting):
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Benchmark

Proton 
density 
distribution

System 𝑬𝒕𝒐𝒕𝐍𝐄𝐎.𝐃𝐅𝐓(eV) 𝑬𝒕𝒐𝒕𝐃𝐅𝐓(eV)
Q-Chem, molecule -2102.5128 -2103.1777
FHI-aims, molecule -2102.5129 -2103.1777

FHI-aims, 10 Å box -2102.5208 -2103.1770

FHI-aims, 20 Å box -2102.5161 -2103.1777

FHI-aims, 30 Å box -2102.5129 -2103.1777

Theory and Method
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1D trans-polyacetylene [C2H2]n (a) (b)2D hydrogen boride (HB)

Water on TiO2 surface

Total energy with epc17-2

𝑬𝒕𝒐𝒕𝐍𝐄𝐎.𝐃𝐅𝐓(eV) 𝑬𝒕𝒐𝒕𝐃𝐅𝐓(eV)
∆𝑬 per 
proton

[C2H2]n -2107.244 -2106.321 0.462
HB -1382.983 -1382.170 0.406

∆𝑬NEO per proton (eV) Surface Bulk

epc17-2 0.33 0.31
No epc 1.07 1.06

Electron

Δ𝜌 from DFT to NEO-DFT

Proton Proton Electron

Δ𝜌 as k-point sampling converges

-

+

No. unit cell 1 2 4 8 16
𝑬𝒕𝒐𝒕𝐍𝐄𝐎.𝐃𝐅𝐓/𝑛)(eV) 0.361 0.459 0.464 0.462 0.462

No. k point 1 2 4 8 16

𝑬𝒕𝒐𝒕𝐍𝐄𝐎.𝐃𝐅𝐓/𝑛)(eV) 0.361 0.459 0.462 0.462 0.462

Supercell vs. electron k-points 16 x 16 x 1 electron k-pointsBand structures and Density of states

This also numerically validates the Γ-point only sampling of BZ
integration for protons. Both calculations show degenerate
proton eigenvalues of -27.348 eV.

Dependence of Nuclear quantum effects (NQEs) of protons on their
local chemical environments can be examined.

100 x 1 x 1 electron k-pointsBand structures and Density of states
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