Potential energy surfaces are a model for studying strong correlation and diatomic molecules represent a variety of chemical environments.

Research Question: How does the electronic structure of diatomics differ at equilibrium and stretched bond lengths at finite temperature?

At low temperatures, we can compare to FCI ($T = 0$ Ha), and we find evidence that for some diatomics the depth of the bonding well increases with a small increase in temperature. At intermediate temperatures, we find that for all the diatomics there is a small energy barrier to association relative to the $r = 100$ Å molecule.

For N_2, O_2, and F_2, we found that there are temperatures where the potential energy curve is completely repulsive. At extremely high temperatures, we found evidence of a second bonding well, further out in bond length.

Potential energy surfaces of STO-3G diatomics share qualitative features across finite temperatures

Comparisons with FCI

Energy Barrier

At low temperatures, we can compare to FCI ($T = 0$ Ha), and we find evidence that for some diatomics the depth of the bonding well increases with a small increase in temperature.

At intermediate temperatures, we find that for all the diatomics there is a small energy barrier to association relative to the $r = 100$ Å molecule.

For N_2, O_2, and F_2, we found that there are temperatures where the potential energy curve is completely repulsive. At extremely high temperatures, we found evidence of a second bonding well, further out in bond length.

Beyond FCI: N_2-cc-pVDZ with i-PIP-DMQMC

We use full configuration interaction and density matrix quantum Monte Carlo to calculate temperature dependent energies and properties.

Finite temperature FCI (t-FCI)

$$\langle \langle \beta \rangle \rangle = \sum_i \beta_i \exp(-\beta \varepsilon_i)$$

Density matrix quantum Monte Carlo (DMQMC)

Use the N-body thermal density matrix:

$$\delta = \exp(-\beta \mathcal{H})$$

We use HANDE/QMC for both FCI and DMQMC calculations.

Temperature effects the stiffness of the bond; measured by the force constant and modeled with a Harmonic Oscillator approximation.

Potential energy surface of N_2-cc-pVDZ with i-PIP-DMQMC.

The reaction energies for association and dissociation can be estimated across a large temperature range.

At low temperatures, all of the dissociation energies of the diatomics are nonzero, indicating the presence of a bonding well. There is a small region in the intermediate temperature range where the dissociation energy is equal to zero for some diatomics. At high temperatures, we find that there is a second bonding minimum with a slightly lower dissociation energy.

Acknowledgements

Office of Science

Funding: Department of Energy, Office of Science, Office of Basic Energy Sciences Early Career Research Program (ECP) under Award Number DE-SC0002137.

Supercomputer time: National Energy Research Scientific Computing Center (NERSC), a U.S. DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory operated under Contract No. DE-AC02-05CH11231.