Diatomic potential energy surfaces and the effect of temperature
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Potential energy surfaces are a model for studying strong correlation and We use full configuration interaction and density matrix quantum Monte

diatomic molecules represent a variety of chemical environments Carlo to calculate temperature dependent energies and properties
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Potential energy surfaces of STO-3G diatomics
share qualitative features across finite
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= S The reaction energies for association and dissociation
Density Matix Density Matrix can be estimated across a large temperature range
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At high temperatures, we find that

for the p-block diatomics. For Li, and Be,, the force constant generally decreases with increasing temperature.
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= In general, the force constant increases as we go from left to right across the first row.
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