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Singlet fission (SF), the conversion of one singlet exciton into
two triplet excitons, could significantly enhance solar cell
efficiency. Molecular crystals that undergo SF are scarce.
Computational exploration may accelerate the discovery of SF
materials. However, many-body perturbation theory (MBPT)
calculations of the excitonic properties of molecular crystals
are impractical for large-scale materials screening. We use the
sure-independence-screening-and-sparsifying-operator
(SISSO) machine-learning algorithm to generate
computationally efficient models that can predict the MBPT
thermodynamic driving force for SF for a dataset of 101
polycyclic aromatic hydrocarbons (PAH101). SISSO generates
models by iteratively combining physical primary features.
The best models are selected by linear regression with cross
validation. The SISSO models successfully predict the SF
driving force with errors below 0.2 eV. Based on the cost,
accuracy, and classification performance of SISSO models, we
propose a hierarchical materials screening workflow. Three
potential SF candidates are found in the PAH101 set.
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Conclusion

• Singlet fission is a spin-allowed process in which an organic
chromophore in an excited singlet state shares its excitation
energy with a neighboring ground-state chromophore and
both are converted into triplet excited states. And it is
thought to potentially break the Shockley Queisser limit of
Solar Cells.

• Computational exploration of the chemical space may
significantly accelerate the discovery of candidates
for SF in the solid state and guide experimental efforts in
promising directions.

Introduction

Organic Molecular Crystal

Materials

The primary features are calculated at DFT@PBE level. We
used a system with 62 atoms per molecule as basic unit. The
relative cost are multiples of basic units:

Methodology

The SF driving force in the PAH101 dataset are calculated by 
MBPT GW+BSE. A threshold of driving force is set to be -0.62 
eV. The red structures are considered as SF candidates:

Results
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Molecules (as motif) are packed 
with relatively weak 
intermolecular binding

Advantage to undergo SF:
• Molecular orbitals evolve into 

dispersed bands, excitations 
are easier to happen

• Excitations may be 
delocalized over many 
molecules, facilitate the 
exciton coupling

• Primary criterion for SF: The thermodynamic driving force.
The energy difference between the initial singlet state and
final state of two triplets (ES – 2ET)

• PAH101 dataset: A set of 101 PAH crystal structures extracted
from the Cambridge Structural Database (CSD). The
systems in the PAH101 set represent diverse chemical
families within the larger PAH class.

• In summary, to accelerate the computational discovery of
potential materials for intermolecular SF in the solid state,
we have used machine learning to generate models that
are fast to evaluate and accurately predict the
thermodynamic driving force.

• The SISSO machine-learning algorithm was used to
generate models with a varying degree of complexity by
combining physically motivated primary features, the most
predictive models were selected by linear regression with
cross validation.

Build Model: SISSO
(1) Feature Combination

(2) Linear Regression Mdim, Rung
Hyperparameters to restrict the model:
• Rung: Limit of number of feature combination (<=3)
• Dim (n): Dimension of final model (<=4)

(3) Leave-N-out Cross Validation (LCV)
The aim of this process is to prevent overfitting. We permutate
N structures from the training set as unseen data and use
them as validation sets to evaluate the model performance.

Cost Accuracy trade-off:

Hierarchical screening approach:

• Stage 1:

• Stage 2:

Model performance:

The best model we have (M2,3) is giving prediction with RMSE 
of 0.15 eV, screening out 73 non-SF structures and keep all 24 
SF candidates
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• We have successfully used the SISSO machine-learning
algorithm to find predictive models for excited state
properties of molecular crystals using small amount of data.

• The accuracy of the SISSO-generated models
demonstrated good performance with training RMSE
below 0.2 eV, exceeded by far the accuracy baseline models
based on DFT estimates of the single molecule and crystal
SF driving force.

• The hierarchical screening approach downsized the 101-
structure set to 28 but kept all 24 SF candidates.

• Finally, three potentially promising SF materials that have
not been reported previously were discovered in the PAH101
set: BCPP, TBPT, and DPNP. For these materials, further
analysis was performed using GW+BSE.

The range of predictions produced by Models M1,2 and M2,3 
for the PAH101 dataset:

The materials are arranged in order of increasing SF driving
force from left to right. The red dots indicate the
GW+BSE@PBE SF driving force, the blue error bars represent
the prediction range of the two SISSO models. The region of
promising SF candidates is highlighted in yellow and
magnified in the inset. Molecular structures of non-SF
materials with prediction range higher than 0.4 eV and the SF
material with highest prediction error are shown.


