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Raman scattering from layered electron gas

My entry into physics research
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Plasma dispersion in a layered electron gas: A determination T s s
' in GaAs-(AlGa) As heterostructures | ' Sy
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Bell Laboratories, Murray Hill, New Jersey 07974
(Received 30 April 1982)
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The dispersion of the plasma frequency of layered electron gases in GaAs-(AlGa)As hetero- | n=5.5<10"" elec. cm-2
o . . e A . : . : k,d=4.67
structures was determined by inelastic light scattering. The measured dispersions differ from L 4
that in two- and three-dimensional plasmas. They are linear in the in-plane component of the
wave vector. This observation confirms predictions of theoretical models.
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FIG. 3. Dispersion relations of the plasma frequency of
the layered electron gas in the two samples. The solid lines
represent the calculated dispersions with Eq. (1). The
dashed lines are evaluations of Eq. (2).
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FIG. 2. (a) Typical light scattering spectra from sample 1.
The low-energy band is the layered electron gas plasmon.
(b) Plasmon lines of the layered electron gas for different
angles . With increasing 6 (decreasing k) the plasmon
band shifts to lower energies.
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Dielectric response of a semi-infinite layered electron gas
and Raman scattering from its bulk and surface plasmons

Jainendra K. Jain and Philip B. Allen
Department of Physics, State University of New York, Stony Brook, New York 11794
(Received 22 March 1985)

An exact solution of the random-phase-approximation equations is worked out for the density-
density correlation function of a semi-infinite system of two-dimensional electron-gas layers, with
different dielectrics outside and inside the layered system. From this solution, analytic formulas are
derived for the dispersion relations of the bulk and surface plasmons and for the intensity of the
light scattered inelastically from such a system. The intensity is written as a sum of the bulk and
the surface terms. The theory is applied to semiconductor multilayers. The line shape of the bulk-
plasmon peak, obtained after cancellation of van Hove singularities in the bulk piece by the surface
piece, is compared with experiment. Conditions for observation of the Giuliani-Quinn surface
plasmon are outlined. | |
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FIG. 3. Dispersion relation for the surface plasmon for cer-
tain values of a. The shaded region is the bulk-plasmon band
and has no surface plasmon inside it. a=0.86 corresponds to
vacuum outside the semi-infinite LEG.
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FIG. 4. Comparison between the experimental and theoreti-
cal line shapes of the bulk-plasmon peak in the Raman spec-
trum. The experimental peak has been shifted along the w axis
to align it with the other peak. The result of a naive theory
I{w)=—Im D°%/e(w) is also shown. All the spectra are normal-

.ized separately.
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Plasmons in Layered Films

Jainendra K. Jain and Philip B. Allen

Department of Physics, State University of New York, Stony Brook, New York 11794
(Received 3 April 1985)

A random-phase-approximation theory is given for the electronic collective modes of a film con-
taining NN equally spaced layers of two-dimensional electron gas. Raman line shapes are predicted.
The Giuliani-Quinn surface-plasmon intensity is enhanced in transmission geometry.
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Discrete Plasmons in Finite Semiconductor Multilayers

A. Pinczuk, M. G. Lamont, and A. C. Gossard

AT&T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 19 November 1985)

We observe discrete plasmons in layered 2D electron gases with a large, but finte, number of
periods. The twofold degeneracy of plasmon modes with wave numbers in the first Brillouin zone
of the infinite system is lifted by the loss of complete periodicity in the finite system. These charac-
teristic discrete plasmon doublets are measured in inelastic-light-scattering spectra of multilayer
GaAs/ (AlGa) As heterostructures.
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* The FHQE state is one of the most amazing collective states of matter.



Neutral modes in FQHE: SMA
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Collective-Excitation Gap in the Fractional Quantum Hall Effect

S. M. Girvin
Surface Science Division, National Bureau of Standards, Gaithersburg, Maryland 20899

and

A. H. MacDonald
National Research Council of Canada, Ottawa, K1A OR6, Canada

and

P. M. Platzman
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 25 October 1984)
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Observation of Collective Excitations in the Fractional Quantum Hall Effect

A. Pinczuk, B. S. Dennis, L. N. Pfeiffer, and K. West
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
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FIG. 1. Temperature dependence of inelastic light scattering
spectra of a low-lying excitation of the FQHE at v=1%. The
single quantum well has density »=8.5x10'" cm ~2. The inset
shows the B dependence of the 0.5 K spectra. The light scatter-
ing peak, labeled “gap excitation,” is interpreted as a ¢ =0 col-
lective gap excitation. The bands labeled Lo and L¢ comprise
the characteristic doublets of intrinsic photoluminescence. The
temperature dependence of the Lo and Lg intensities is due to
the optical anomaly at v= 7.

(Received 27 January 1993)

Kang, Pinczuk et al. PRL 86, 2637 (2001)
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FIG. 1. (a) Resonant inelastic light scattering spectra at v =
1/3. SW denotes the long wavelength spin wave excitation
at the Zeeman energy E; = gupBr, where g = 0.43 = 0.01.
Dotted lines indicate collective excitations of the FQH state.
(b) The dispersion of collective excitations at » = 1/3. The
solid curve was scaled down from the i1deal 2D result [10] by a
constant to help in assigning the observed modes. Solid squares
indicate results of calculations that incorporate the effect of finite

thickness [24].

* Light scattering can also reveal finite wave vector roton minima due to disorder.



Neutral modes in FQHE: CF excitons



Composite fermions

B* = B —2mp¢, (¢, = hcle) U=

p = density



CF theory of neutral excitations
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* The ground state at v = n/(2n + 1) is v* = n filled levels of composite fermions; its quasihole is a missing
CF; quasiparticle is an isolated CF; and neutral excitations are CF-particle hole pairs. The wave functions
of these are obtained from the known wave functions at integer fillings by composite-fermionization.

* Question: How well does the CF theory work? What all can it explain?
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* The CF exciton theory obtains the dispersions of the neutral excitations at all

v = n/(2pn £ 1) fractions qualitatively and quantitatively.
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FIG. 2. The dispersions of the CF exciton at v=3/7 for a zero
width system, for a heterojunction (with density 1.5x 10'! cm™?),
and for a square quantum well of width 30 nm (with density 0.5
X 10" cm™?). The dispersions are for a system of 63 composite
fermions, obtained by interpolation through the discrete k& values
available in the study.

VOLUME 61, NUMBER 19

15 MAY 2000-I

Rotons of composite fermions: Comparison between theory and experiment

The CF excitons at v = n/(2n £ 1) have n primary roton minima.

0.10

0.00

Vito W. Scarola, Kwon Park, and Jainendra K. Jain
Department of Physics, 104 Davey Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802

(Received 27 December 1999)
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Collective gap excitations at v

1/3 from samples

with various densities (n) within 2.4 X 101 =n =12 X
10'" cm™2. Collective gap excitation energies are measured in

terms of the Coulomb energy, Ec = e?/€ly.

Kang, Pinczuk et al. PRL 86, 2637 (2001)
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Observation of Multiple Magnetorotons in the Fractional Quantum Hall Effect

Moonsoo Kang,!>* A. Pinczuk,"? B.S. Dennis,? L. N. Pfeiffer,” and K. W. West?

'Departments of Applied Physics and Physics, Columbia University, New York, New York 10027
2Bell Labs, Lucent Technologies, Murray Hill, New Jersey 07974
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FIG. 1. (a) Resonant inelastic light scattering spectra at v =

1/3. SW denotes the long wavelength spin wave excitation
at the Zeeman energy E; = gugBr, where g = 0.43 = 0.01.
Dotted lines indicate collective excitations of the FQH state.
(b) The dispersion of collective excitations at » = 1/3. The
solid curve was scaled down from the ideal 2D result [10] by a
constant to help in assigning the observed modes. Solid squares

indicate results of calculations that incorporate the effect of finite
thickness [24].

(Received 5 October 2000)
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FIG. 2. (a) Resonant inelastic light scattering spectra at v =

2/5. Dotted lines denote collective excitations in the FQH state.
(b) The dispersion of collective excitations at ¥ = 2/5. The
solid curve was scaled down from the ideal 2D result [10] by
a constant, as in Fig. 1(b). Solid squares indicate results of
calculations that incorporate the effect of finite thickness [24].



High energy neutral modes
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PRL 95, 066803 (2005) PHYSICAL REVIEW LETTERS 5 AUGUST 2005

Splitting of Long-Wavelength Modes of the Fractional Quantum Hall Liquid at » = 1/3

C.F Hirjibe:he:din,1’2’>‘< Irene Dujovne,S’2 A. Pinczuk,'*> B.S. Dennis,” L. N. Pfeiffer,” and K. W. West”

'Department of Physics, Columbia University, New York, New York 10027, USA
’Bell Labs, Lucent Technologies, Murray Hill, New Jersey 07974, USA

*Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
(Received 17 February 2004; published 2 August 2005)
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FIG. 1. Inelastic light scattering spectra of low-lying long- 1.0 1 2 1 4 1.0
wavelength charge modes at v = 1/3 at various angles 6 in Ene rgy [meV]

(a) sample A and (b) sample B. The spectra are also labeled by

the equivalent wave vector k = (2w; /c) sinf in units of 1/1,. : :
The gray arrows highlight the splitting of the single peak at small FIG. 2. Spectra from Figs. 1(a) and 1(b) with backgrounds

wave vectors into two peaks at larger wave vectors. The light subtracted. The gray lines show fits with two Lorentzian line
gray lines show the background. The upper inset in panel (a) shapes.
shows the inelastic light scattering geometry.

* The g = O mode at v = 1/3 splits into a doublet at finite g
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Collective excitations of composite fermions
across multiple A levels

Dwipesh Majumder’, Sudhansu S. Mandal' and Jainendra K. Jain®*
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* Surprisingly, the energies of CF excitons across multiple CF Landau levels merge atg = Oatv = 1/3.

» Theoretical splitting of 0.013(5)e?/¢el at gl = 0.15 is in good agreement with experiment (~0.012(3)).

* The splitting seen in experiments thus represents a CF exciton across two CF Landau levels.



week ending

PRL 106, 096803 (2011) PHYSICAL REVIEW LETTERS 4 MARCH 2011

Higher-Energy Composite Fermion Levels in the Fractional Quantum Hall Effect

Trevor D. Rhone,’ Dwipesh Majumder,2 Brian S. Dennis,’ Cyrus Hirjibehedin,4 Irene Dujovne,5 Javier G. Groshaus,6

Yann Gallais,’” Jainendra K. Jain,® Sudhansu S. Mandal,” Aron Pinczuk,'” Loren Pfeiffer,” and Ken West’
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FIG. 2 (color online). ILS spectra of excitations at » = 1/3 as a function of the energy shift (with total magnetic field By = 8.0 T,
and a tilt of 30°). The energy is shown in units of e?/el on the top scale, where [ is magnetic length and e, the dielectric constant of
GaAs. The upper panels show peaks of several modes for certain selected incident photon energies. The lower panel contains a color
plot of the intensities of both (a) “low energy” and (b),(c) the novel high-energy modes. The vertical lines mark the positions of the
collective modes. The symbols, explained in the text, identify the modes with excitations of CFs across several A levels, both with
and without spin reversal.
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FIG. 3 (color online). Schematic diagram of CF excitons ac-
companied by theoretical calculations of their dispersions.
(a) The right panel shows pictorially the SC excitations |0, ) —
|K, 1) across K A levels. The left panel shows the spin-flip modes
10, 1) — |K, |) (b) Calculated dispersions of CF excitons for a
35 nm wide GaAs quantum well with an electron density of
5.0 X 10'"Y cm™2. The right (left) panel shows the dispersions for
SC (SF) modes. The error bar at the end of each curve represents
the typical statistical uncertainty in the energy determined by

Monte Carlo method. Critical points in the dispersion are
labeled.

FIG. 4 (color online). Comparison of CF excitons with exact
diagonalization results (in spherical geometry) for eight particles
at v = 1/3. The (red) stars show the CF exciton dispersions for
the lowest three SC branches for this system as a function of the
total orbital angular momentum L. The exact spectra are taken
from Ref. [12]. The area of each black rectangle 1s proportional
to the normalized spectral weight under the state; larger spectral
weight implies greater intensity in ILS. The level-1 and level-2
CF excitons closely trace lines of high spectral weight; it 1s
possible that still higher modes will become identifiable in the
exact spectra for larger systems. The other states in the exact
spectrum are interpreted as made up of multiple excitons, which
are expected to couple less strongly to light.
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FIG. 5 (color online). Comparison between experimental en-
ergies [from Fig. 2, (red) circles] with theoretical CF exciton
energies [from Fig. 3, (blue) stars], organized according to the
level of the excitation. The identification of experimental modes
1s explained 1n the text. The discrepancy between theory and
experiment, less than 0.2-0.3 meV, 1s presumably due to disor-
der. Estimated error bars for the experimental values are shown,
unless smaller than the symbol size.

Both theory and experiments have lots of modes. There is an
approximate correspondence between their energies.



Spin rotons
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Observation of Nonconventional Spin Waves in Composite-Fermion Ferromagnets

U. Wurstbauer, " * D. Majumder,2 S.S. Mandal,2 I. Dujovne,3 T.D. Rhone,' B.S. Dennis,4 A.F. Rigosi,1 J. K. Jain,5
A. Pin(:zuk,l’6 K. W. West,” and L. N. Pfeiffer’
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FIG. 2 (color online). Inelastic light scattering spectra in the
energy range of lowest spin-reversed excitations. (a) Results for
1/3=v=4/9 (1 =p=4) at 0 =50°. The tail below E,
increases with increasing AL number p. At v = 1/3 only a
high energy tail is observable. (b) Spectra at v = 3/7 for 6 =
30° (black squares). The black (blue) line 1s a fit with three
individual Lorentzians shown i1n gray. The peak positions are
marked with vertical lines.

* Experiments show spin flip modes below the Zeeman energy atv = 2/5, 3/7, 4/9!
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* The spin wave is renormalized by the spin-flip CF exciton that alters the CF-LL Index. This
produces sub-Zeeman spin rotons at 2/5, 3/7, ....

* No sub-Zeeman spin roton is expected at 1/3.



Quantitative comparisons with experiment
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FIG. 4 (color online). Upper panel: Spectra at v = 4/9 for
@ = 50° (solid squares) and 8 = 30° (solid circles) and at v =

4/7 for @ = 30° (open blue circles). The solid lines are calcu-
lated ILS intensities for v = 4/9 at § = 50° and 30°. Lower
panel: Calculated wave vector dispersion for v = 4/9.

* An excellent qualitative and quantitative understanding of the sub-Zeeman spin rotons has been achieved.



CF skyrmions
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Evidence of Landau Levels and Interactions in Low-Lying Excitations
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of Composite Fermionsat1/3 = v < 2/5
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FIG. 2. Light scattering spectra of the low-lying spin excita-
tions at three different filling factors: v = 0.343, v = 1/3, and
v = 0.323. The scattering geometry 1s shown in the inset.

Transition from Free to Interacting Composite Fermions away from » = 1/3

Y. Gallais,l’>X< T. H. Kirschenmann,1 I. Dujovne,l’T C.E Hirjibehedin,l’i A. Pinczuk,l’2
B.S. Dennis,2 L.N. Pfeiffer,2 and K. W. West?

'Departments of Physics and of Applied Physics, Columbia University, New York, New York 100, USA

’Bell Labs, Lucent Technologies, Murray Hill, New Jersey 07974, USA
(Received 2 May 2006; published 19 July 2006)

e At v = 1/3, there is no sub-
Zeeman mode.

e Forv > 1/3andv < 1/3 there

are sub-Zeeman modes.



Positively charged CF skyrmionv < 1/3 (v* < 1)
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* The sub-Zeeman excitations are
the tiniest avatars of skyrmions (i.e.,
CF quasiparticles or CF quasiholes
dressed by a single spin-flip CF
exciton). These have positive
chargeforv < 1/3 (v* < 1), and

negative forv > 1/3 (v* > 1).

* This provides an excellent
quantitive account of experiment.

* For sufficiently small Zeeman
splittings, a QH or QP will
spontaneously bind one or many
spin-flip excitons.
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Figure 3 | Contrasting the positively charged skyrmion with the
composite fermion (CF) hole. (a,b) show charge density profiles of a CF
hole and a positively charged fractional skyrmion. Their spin polarization,
defined by (p;(r) —p,(r))/(p;(r)+p,(r)) where p,(r) and p,(r) are the
spatial densities of spin-up and spin-down composite fermions, is shown in
¢, d, respectively. The minimum/maximum values of the colour bars in each
panel are: (a) 0.006/0.357, (b) 0.266/0.333, (¢) 1.000/1.000,

(d) — 0.695/1.000. The disk shown has a radius of 12.5 /.
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Figure 4 | Thermodynamic extrapolation of the binding energies of the
fractional skyrmions. The blue (red) symbols show the energies of
negative (positive) fractional skyrmions for a system of N particles with
zero transverse width, obtained from exact diagonalization. The inset shows
the amount by which finite-width corrections lower the energy of the
fractional skyrmion (FS) for a sample of width 33 nm.






