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The dispersion of the plasma frequency of layered electron gases in QaAs-(A1Ga)As hetero-
structures was determined by inelastic light scattering. The measured dispersions differ from
that in two- and three-dimensional plasmas. They are linear in the in-plane component of the
wave vector. This observation confirms predictions of theoretical models.

The collective beh'avior in electron plasmas of
lower dimensionality is quite different from that in
three-dimensional (3D) systems. The differences oc-
cur because the electric fields remain 3D while the
induced charge densities have reduced dimensionali-
ty. In this Communication we report a determination
of the plasma frequency dispersion in layered elec-
tron gases that occur in multiple GaAs-(AIGa) As
heterostructures. For the first time in a layered elec-
tron system, we observed a dispersion relation that is
different from that in 3D and 2D plasmas. The mea-
surements, carried out by inelastic light scattering,
show a linear dispersion over a wide range of in-plane
component of the wave vector. These results con-
firm predictions of the electrodynamics of layered
electron plasmas.
In a layered electron gas, the free charges are con-

strained to move on parallel planes spaced by a dis-
tance d. This model system was introduced to
describe dielectric screening' and the electrodynamics
of layered solid-state plasmas, ' ' including free elec-
trons in semiconductor superlattices. 6' The plasma
frequency is predicted to be'

t i/22' n8 sinhk ~idp= e~m' coshki~d —coskqd
where n is the areal electron density in each plane,
m' the electron effective mass, and &~ is the dielec-
tric function of the medium supporting the planes.
kii and kq are the in-plane and normal components of
wave vector. Equation (1) exemplifies the transition
behavior between regimes of different dimensionality.
For large separation between the planes (ksd » 1)
the dispersion reduces to that of a 2D plasma with
the characteristic square-root dependence. For long
in-plane wavelengths (k~~d && 1) and with all the
planes oscillating in phase (kq =0), the dispersion is
similar to that of a 3D system. 9 However, when
kq W 0 the contributions from induced electric fields

in different planes tend to cancel. ' Then, Eq. (1)
takes the distinctive linear dependence3

]/2
2mne d

co~ = kl~
q~m 1—coskgd
!

(2)

In this regime (ksd « 1 and kq W 0) the calculated
response is most different from that in 2D and 3D
plasmas.
Until the present work, there has been no experi-

mental test of these predictions. Previous studies in
layered electron systems (intercalated graphite) by
means of electron energy-loss spectroscopy showed a
3D-like plasma dispersion. ' Plasma frequency
dispersions have been also measured in the case of
electrons on the surface of liquid He (Ref. 11) and in
silicon inversion layers. " In the former a 2D disper-
sion was determined, with the characteristic square-
root dependence. " In the case of the silicon inver-
sion layer, the measurements probed the wave-vector
range in which the dispersion also shows a square-
root dependence. '
The GaAs-(AI„Ga~ „)As multiple-quantum-well

heterostructures were grown by molecular-beam epi-
taxy on GaAs (001) substrates, and modulation
doped with Si donors. " Their structure is shown
schematically in Fig. 1(a). The electrons that vacated
the donor impurities in the (A1Ga) As layers (of
widths d2) become confined in the GaAs layers (of
widths d~), where they occupy lower-energy states in
two-dimensional subbands. ' These are the charges
that constitute the layered electron gas with extreme-
ly high mobility, in excess of 5 x 10"cm'/V sec. We
present here data from two samples. Sample 1 con-
sists of 20 periods with d, = 262 A, d 2 = 628 A, total
thickness L =1.78 p,m, x =0.20, and n =7.3 x10"
cm 2. Sample 2 has 15 periods with dt ——245 A,
d2= 258 A, L = 1.24 pm, x = 0.11, and n = 5.5 x 10"
cm '.
Low-temperature (T = 10 K) light scattering spec-
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FIG. 3. Dispersion relations of the plasma frequency of
the layered electron gas in the two samples. The solid lines
represent the calculated dispersions with Eq. (1). The
dashed lines are evaluations of Eq. (2).

the electron density. This evidence leads us to assign
the new low-energy lines to the plasma oscillations of
the layered electron gas. The assignment is con-
sistent with the polarization selection rules we mea-
sure, which apply to light scattering by collective exci-
tations via the charge-density fluctuations. '
Figure 3 shows that there is a linear relation

between the measured plasma energies and kII, in
qualitative agreement with the dispersion predicted by
the theory. We give below a quantitative interpreta-
tion of the data on the basis of Eqs. (I) and (2). In
taking this approach, we are implicitly assuming that
the GaAs layers can be considered extremely thin;
and we are also ignoring tunneling effects. These ap-
proximations, justified because kIIdi && 1 and
d2=600 A, also lead us to take d=d~+d2. In addi-
tion, the plasma oscillations are screened by the polar

optical phonons that occur at higher energies. This
effect is included in e~. We shall not consider here
nonresonant interactions with intersubband excita-
tions. They are beyond the scope of existing theoret-
ical models and are anticipated to be small. We note
that intersubband excitations create very small in-
plane components of macroscopic electric field when
kRdi && 1.
In the evaluations of Eqs. (I) and (2), we set

m'= 0.07mo, and ~~ = 13.1, the static dielectric con-
stant of GaAs. kq was estimated by using values of q
from the current literature. ' The lines in Fig. 3
represent the calculated plasma dispersions. There is
good agreement with experiment. The relatively
small differences could be accounted for by the un-
certainties in the determination of the sample param-
eters n, q, and d.
In our experiments cop 0 kIIvF where v~ is the Fer-

mi velocity of the free carriers. This implies that the
plasma oscillations are not subject to Landau damp-
ing. The absence of Landau damping suggests that
investigations of lifetime effects in these solid-state
plasmas are possible. The observed linewidths are re-
lated to electron relaxation times and to the spread in
kII associated with the finite aperture of the collection
optics. The sharpness of the peaks in Fig. 2(b), are
consistent with the high-electron mobilities in the
samples.
The linear dispersion of co~ on kII resembles that of

an acoustic mode. Acoustic oscillations of 3D plas-
mas are Landau damped. ' Undamped acoustic plas-
ma modes have been predicted for two-component
2D systems. '
In conclusion, we have observed a linear dispersion

relation of the plasma frequency in a layered electron
gas. Our results confirm that collective electron
behavior in GaAs-(Aloa)As heterostructures is well
described by the electrodynamics of layered plasma.
The observation by inelastic light scattering of the
plasma oscillation, and its dependence on kI( exem-
plifies a new approach to study elementary excitations
related with the in-plane degrees of freedom in semi-
conductor heterostructures.
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Aumiller provided expert technical assistance and K.
Baldwin carried out transport measurements.
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FIG. 1. (a) Sequence of the layers and prof»le of the
conduction-band edge in the modulation doped GaAs-
(A16a)As heterostructures. (b) Scattering geometry adopt-
ed to perform the experiment. The components of the
scattcflng wave vcctofs Rfc Slvcil by Eqs. (3) Rfld (4).

Figure 2(a) shows results from sample 1. The
spectra d1splay 8 low-cncrgy peak at 3.5 mcV and two
bands labeled Eo» and Eo». Spectra from sample 2
show equivalent features. For Stokes shifts larger
than 20 mcV, the high-energy tail of the lumines-
cence across the direct gap of the 68AS layers dom-
inates the spectra. The Eo» and Eol bands are similar
to those reported in previous light scattering work. »4
They are associated with single-particle (Em), and
collective (EII1 ) intersubband excitations of the elec-
trons confined in the Gahs layers. The low-energy
band has not been reported before. The most re-
markable feature is that its position depends strongly
on the angle 8, as can be seen in Fig. 2(b). With in-
creasing 8 [decreasing kll according with Eq. (3)] the
band shifts to lo~er energies. For 8 larger than 35' it
is obscured under the tail of the laser line and can Qo
longer be observed. The lines shown in Fig. 2(b) are
pl'cscnt only ln polarized spectra, where Incident and
scattered light polarizations are parallel.
The peak positions of the low-energy line are plot-

ted as 8 function of kg ln Plg. 3. Bcsldcs thc dcpcn-
dcncc on kII, wc scc that thc cncrglcs also dcpcnd on

tra were excited %1th an Oxazinc 750 dyc lascl'
operating between 7800 and 7850 k 15 Figure 1(b)
displays the backscattcringlikc geometry adopted to
perform the experiment. 8 and @ are the angles
between the normal to the surface of the sample and
the propagation directions of the incident and scat-
tered photons outside the sample. They were chosen
so that 8+ltl = 90'. The components of the scatter-
ing wave vector are thus given by

kll- — (sin8 —cos8)2m

f

4m 1kg=- 4'
where ~ is the wavelength of the incident laser light
and q corresponds to the wavelength-dependent re-
fractive index. By changing 8 from 45' to 0', kI~ can
be varied from 8 small value up to a maximum of
8 x 10 cm, which satisfy thc condltlon kIId 4 1 ln

samples 1 and 2, For q = 3.6, kj has a large value of-5.5 x 105 cm ' and does not depend significantly on
g. Therefore, kid is a well-defined parameter. By
means of this geometry, we are able to probe the
wave-vect01' 1'a11ge (ksd ( 1 and kgb 0) 111 %111cll
layering effects dominate. The (A16a)As layers are
transparent to the laser photons. The absorption
length u ' in the GaAs layers is -0.6p,m, and conse-
quently all the quantum wells are excited. The condi-
tion k~L && 1 holds, and the electrons should
respond as lf they werc ln an lnflnltc arlay of pl8ncs.

t l l t i

6
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FIG. 2. (a) Typical light scattering spectra from sample &.
The low-energy band is the layered electron gas plasmon.
(b) Plasmon lines of the layered electron gas for different
angles 8. With increasing 6I (decreasing kII) the plasmon
band shifts to lower energies.
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An exact solution of the random-phase-approximation equations is worked out for the density-
density correlation function of a semi-infinite system of two-dimensional electron-gas layers, with
different dielectrics outside and inside the layered system. From this solution, analytic formulas are
derived for the dispersion relations of the bulk and surface plasrnons and for the intensity of the
light scattered inelastically from such a system. The intensity is written as a sum of the bulk and
the surface terms. The theory is applied to semiconductor multilayers. The line shape of the bulk-
plasmon peak, obtained after cancellation of van Hove singularities in the bulk piece by the surface
piece, is compared with experiment. Conditions for observation of the Giuliani-Quinn surface
plasmon are outlined.

I. INTRODUCTION

The electronic properties of a layered electron gas
(LEG) have recently attracted much attention. ' In par-
ticular, the predicted dispersion relation for the bulk
plasmon ' of the LEG, which is quite different from the.
dispersion relations for the plasmon in, a two-dimensional
or a three-dimensional electron gas, was confirmed exper-
imentally by Olego et al. ' in an experiment of inelastic
light scattering from GaAs-(AlGa)As heterostructures.
The bulk-LEG-plasmon dispersion relation is' '

cop(q~qz )
2mne . sinh(qd )
em cosh(qd) —cos(q, d)

1/2

where q and q, are the components of the plasmon wave
vector parallel and perpendicular to the planes, n is the
density of the electrons (per unit area) in the plane, m is
the electron mass, e is the background dielectric constant,
and d is the distance between two successive layers. Be-
cause electrons are confined to layers, this system has a
surface plasmon only when the background dielectric con-
stant of the LEG differs from that outside the LEG. The
dispersion relation for the surface plasmon was obtained
by Giuliani and Quinn, by imposing the standard electro-
dynamic boundary conditions at the layers of a semi-
infinite LEG.
To the best of our knowledge, no theory of Raman

scattering from a LEG exists. In this work we present
such'a theory. (A short paper of parts of this work has al-
ready been published. ) We calculate exactly [in the

. random-phase approximation (RPA)j the density-density
correlation function (or, effectively, the susceptibility) for
a semi-infinite LEG. It can be written as the sum of a
bulk and a surface term. From this correlation function
we calculate the surface™plasmon dispersion relation. A
full theory for the Raman scattering cross section is given,
including line shapes and intensities of various collective
modes. We shall see that ignoring the surface term leads
to spurious peaks in the Raman spectrum at the one-

electron layers

'5, '
5

5

5

z=O z=2d z=5dz-d
I

surface at .z = -d
FIG. 1.. The semi-infinite system of layered electron gas

under consideration.

dimensional Van Hove singularities of the plasmon densi-
ty of states.
Following Visscher and Falicov, ' we take the electron

density to have a 5-function localization in the plane. The
electrons are free to move in the plane and electrons in
different planes interact only via the Coulomb interaction.
The possibility of tunneling between two planes and of in-
traband transitions has been ignored. The planes of the
two-dimensional electron gas are situated at z =Id where l
goes from 0 to ao and are embedded in a space of dielec-
tric constant eo for z & —d' and e for z & —d'. This sys-
tem is shown schematically in Fig. 1.
The plan of the paper is as follows. In Sec. II the

density-density correlation function is derived for the
semi-infinite LEG described above in the random-phase
approximation. In Sec. III, an exact RPA dispersion rela-
tion for the surface plasmon is obtained which is shown in
the Appendix to be identical to the Giuliani-Quinn result.
Section IV contains the theory of Raman scattering: the
Raman intensity is written in terms of the density-density
correlation function. In Sec. V the Raman spectrum is
calculated theoretically and the bulk-plasmon line shape is
compared with experiment. Predictions are made about

32 997 1985 The American Physical Society.
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V. INTENSITY OF RAMAN SCATTERED LIGHT

Now we can substitute the expression for D(l, l ), Eq. (36), into Eq. (49) and obtain the intensity of the Raman scat-
tered light as a function of its energy loss for a fixed value of momentum exchange. After performing the sums over I
and l, I(co), which is proportional to the intensity, is given by

D Vsinh(qd)(u e " —1) D Ve (u A —2u8+C)
(b 1)'—E 2Q (b 1)E— (50)

E=u e ~s+1—2ue"~icos(2k/) . (51)

The first term on the right-hand side of Eq. (50) gives the
bulk contribution I"(co) and the second term gives the
surface contribution I'(co).

A. Bulk plasmon

Now we compare this result with the experiment of
Qlego et al. ' The intensity given by Eq. (50) is plotted in
Fig. 4, as is the intensity observed in the experiment. For
comparison we also include the intensity given by a naive
theory, i.e., I(co)-—Irrd) /e(q, 2k). The naive formula
for the intensity, unlike Eq. (50), does not take into ac-
count the broadening of the perpendicular momentum k,
caused by decay of the photon inside the material due to
the lack of translational invariance in the z direction. The
complete theory, Eq. (50), gives a much better agreement -.

with the experiment. In order to calculate I(co), the
values of parameters have been chosen to be the same as
those of sample 1 of the experiment of Olego et al. ' They
are q=4. 8X10 cm ' (which corresponds to 8=20' in
their notation), effective mass m =0.07m„static dielec-
tric constant e= 13.1, electron density n =7.3 &( 10"cm, d =890 A, 6=6000 A, 2kd =4.94, eo——1, electron
mobility p=5X10 cm /Vs, and' y=e/mp=0. 3 meV.

To see the influence of the purity (or of y) of the sample
on the line shape, we plot also the intensity for y=0+, or
mobility p= oo (and all the other parameters same as be-
fore), in Fig. 4. This shows that the width of the plasmon
peak arises mainly from the spread of the perpendicular
momentum k and the decay of the photon, with electronic
damping giving a smaller contribution. Even for a com-
pletely pure sample the plasmon peak would not be a 5
function [as one would get from the naive formula
I(co)——ImD /e(q, 2k)].

B. Van Hove singularities

& =-+1,
b =cos(2kd),

(52)

(53)

Hidden in the calculated intensity I(co) in Fig. 4 is a
surprising cancellation between bulk and surface parts at
the boundaries b =+1 of the bulk-plasmon band. This is
shown in Fig. 5 in which I (co), I'(co), and I(co) have
been plotted separately for y=0. 1 meV. I (co) has an in-
teresting structure which is explained as follows. The
denominator of Eq. (50) becomes zero or small at three
separate frequencies given by

where Eq. (53) is the solution of E=0 in the limit
d/5~0, and is the same as the dispersion relation of a

L
O

nfl

0)
L
O
L

O
E
O0
0
2 4

cu ( rneV)
~ ~
~ ~~ s

W

4

~0
~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~

FIG. 4. Comparison between the experimental and theoreti-
cal line shapes of the bulk-plasmon peak in the Raman spec-
trum. The experimental peak has been shifted along the co axis
to align it with the other peak. The result of a naive theory
I(co)=—Em D /e(co) is also shown. All the spectra are normal-
. ized separately.

4
~ ( meV)

FEG. 5. I"(co), I'(co), and I(co). When the surface term Is is
added to the bulk term I to get I, it cancels the peak in I at
cg;„=2.5 meV.
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explicitly performed: b =cosh(qd) —D Vsinh(qd),

(31) u =b+(b 1—)'
(34a)

(34b)

G =—,[(b —1) '~2—1/sinh(qd)]/sinh(qd),
H =—,[u '(b2 1—) '~ —e ~"/sinh(qd)]/sinh(qd),

Q = —,
'
I 1 (b —1)—'/ [1 bco—sh(qd)]/sinh(qd) )

,' ae t"(—b2 1) '—~ [cosh(qd) —b]/sinh(qd),

(32a)

(32b)

(33)
I

d ~ ~idl —~I ~(b2 1)—I/2
2m 0 b —cos(qz d) (35)

we can write an analytical formula for the real-space
correlation function D(l, l') in the limit N~ oo.'

The imaginary part of b is always positive. Again the
complex square root is chosen to be the one with imagi-
nary part greater than zero. Notice that

~

u
~
& 1.

Using Eqs. (21) and (27) and the formula

D(l l') =D 5„+DVsinh(qd)(b2 —1)—i&2u —I
t t'1 +—DoV(1 e Nqd) — u —(t+t')

2u (b —1)Q (36)

The first two terms on the right-hand side give D (l, l')
and the last term gives D'(i, l'). As expected, D (),l') de-
pends only on the difference l —1', and D'(l, l') decays in
magnitude as one goes far from the surface, i.e., as l and
l' become large.

III. BULK AND SURFACE PLASMONS

The poles of the density-density correlation function
yield the energies of collective excitati. ons that couple to
the ground state via the density operator. Thus the poles
of D (q„k,) given by Eq. (27) will give the plasmon ener-
gies.
(i) Bulk plasmon As ha. s already been noted, the pole

e(q, )=0 of D"(q, ) leads to the dispersion relation of the
bulk plasmon, Eq. (1). The relation can also be written as
b =cos(q, d), where b is defined in (34a). The range—1 & b & 1 defines the plasmon band which occurs for a
fixed q parallel to the plane by considering all possible
values of q, .
(ii) Surface plasmon The .dispersion of the surface

plasmon is given by the relation

For a ~ 0 this solution continues above the bulk-plasmon
band, and for a &0 it continues below the bulk-plasmon
band. We have plotted the dispersion relation of the sur-
face plasmon in Fig. 3 for three values of u. En light
scattering only a very small momentum exchange q is ac-
cessible and therefore it is desirable to have a large

~
a

~

in
order to be able to see the surface plasmon.

IV. THEORY OF RAMAN SCATTERING

The coupling of the system to the external laser field
A(x, z, t) is given by

H;'„,=g[ ep; A(r;, t)+e A(r;, t).p; +e [A(r;, t)] ]/2m, ,

(39)

where p; and r;=(x;,z;) are the momentum and position
of the ith electron. For external laser frequencies cot
small compared to interband electron resonances, we use
the standard trick' ' of using only the A term, but with

Q(q, co)=0, (37)

which describes the pole of the surface term D' in Eq.
(27). An analytic form of Q is given in Eq. (33); the
dispersion relation (37) is exact in the RPA. When eo e-—
or a=0, it reduces to b =cosh(qd) which does not have
any nontrivial solution as can be seen from the definition
of b in Eq. (34a). However, for a&0, Eq. (37) may have
solutions. This equation may be rewritten as

(b —1)'~ si h(nqd)+ e abt+c sho(qd)(b —ae~")=1 .
(38)

In the Appendix we show that Eq. (38) agrees exactly with
the result obtained by Cxiuliani and Quinn. In particular,
because of the presence of the factor (b 1)'~, this equa-—
tion does not have any solution within the bulk-plasmon
band —1 &b & 1. At the boundaries of the plasmon band,
namely b =+ 1, it has the simple solution e ~ =

~

a
~

.

O
loE

3

I.O 2.0
q {lO cm )

5.0

FIG. 3. Dispersion relation for the surface plasmon for cer-
tain values of a. The shaded region is the bulk-plasmon band
and has no surface plasmon inside it. a=0.86 corresponds to
vacuum outside the semi-infinite LEG.
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Plasmons in Layered Films
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A random-phase-approximation theory is given for the electronic collective modes of a film con-
taining N equally spaced layers of two-dimensional electron gas. Raman line shapes are predicted.
The Giuliani-Quinn surface-plasmon intensity is enhanced in transmission geometry.

PACS numbers: 71.45.Gm, 73.60.—n

Plasmon excitations have been studied both theoret-
ically and experimentally for two-dimensional electron
gas (2DEG) ' and for systems with layers of 2DEG4 2

(called layered electron gas, or LEG; these are realized
experimentally in semiconductor multilayer systems).
This paper studies the spectrum of a system with a fin-
ite number of layers, which is interesting both in its
own right, and as a way to understand the evolu-
tion from 2DEG to bulk LEG. A third reason also
emerged in this study: A finite system permits
transmission experiments, and these provide a natural
method for measurement of the as yet unobserved
Giuliani-Quinn surface plasmon of the LEG.
The model system is a film of thickness L contain-

ing N2DEG layers situated at z =0, d, . . . , (N —1)d,
and embedded in a space with dielectric constant e for
0 & z & L and ep for z & 0 and z )L (This geometry
will be denoted p-eep. )eElectrons a-re free to move in
the plane, but remain in the lowest subband, and do
not tunnel to other planes. This model describes
GaAs-(A1Ga) As heterostructures reasonably well. 2
We ignore coupling to phonons, and assume zero tem-
perature.
The bulk plasmon dispersion relation of an infinite

LEG is given by4

2DEG; V = 27re2/eq is the two-dimensional (2D)
Fourier transform of the Coulomb potential. This
dispersion relation has been verified experimentally by
Olego et al. The plasmon can occur only for

~cosh(qd) —D Vsinh(qd) ~

= ~cos(q, d) ~

« I

N —1

p(1) =D' g V(I,m) p(m).
m=0

(2)

which defines the bulk plasmon band. For a semi-
infinite system, when the dielectric constants inside
(e) and outside (ep) are different, Giuliani and
Quinn predicted also a surface plasmon outside the
bulk plasmon band. It exists only for q greater than a
critical value q' given by q'd = —ln

~
cx ~, where

n=(e —ep)/(e+ep). Inside the bulk plasmon band
the surface plasmon is heavily damped as it can decay
into bulk plasmons because of the lack of conservation
of the z component of momentum.
Now we derive the dispersion relations of collective

modes of a finite film of N layers which in random-
phase approximation are given by the solutions of the
eigenvalue equation

e(q, ) =0,

( ) 1 Dp V sinh(qd)
cosh ( qd) —cos ( q, d )

Here q and q, are the components of the plasmon
momentum parallel and perpendicular to the layers,
respectively. Dp( q, co) is the polarizability of the

The relevant solutions occur in the region where
ImDp 0 and to a good approximation D —nq /
mco'. Thus Eq. (2) is Hermitian, and has Nreal eigen-
values co2 for each q. In Eq. (2), p and Vare the elec-
tron density and Coulomb interaction, Fourier
transformed from (x,y, t) to (q, co), and with the
dependence on q and to suppressed. V(q;I, m) can be
readily calculated by use of the standard electrostatic
image-charge method:

V(q;l, m) = Vqf'(q;l, m),

f( im) p( —qli —mid+ —qli+mld+ 2 —2qL qli —m d+ —2qL —qlt+mld)

p = (1— 2e —2qL) —I

This has the correct limit as L ~ and is also symmetric under the transformation I,m L —I,L —m. Equation
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(2) can be solved analytically by means of Fourier transformation:
N —1

p(q, ) =—g e "' p(l),N i=p
iq d —ikd i(q, —k, )d

1 ~ —iq, id ik md slnh(qd) &t a2(e ' +e ' ) +a3e
P(q ) q' ' 2NP(, )P(k, )

q„k, =2qrj/Nd, j=1, . . . , N, P(q, ) =cosh(qd) —cos(q, d),
at =Jp[1+ ,'nJe—d+ne ( —,' Je —ne )],
a2= JP[cosh(qd) + ,' a—Je +—,

' nJeq"—n cosh(qd) e e q ],
a3= Jp[1+ ,'nJ+——,'nJe q —n eq"e q ],

e —Nqd

(3)

(4a)

(4b)

(4c)

[In Eqs. (4), a; are given for 6p-6-6p geometry. For Ep EEg-e-ometry, only the first two terms on the right-hand
side of Eqs. (4) are retained with p =1; and for e-e-e geometry, only the first term is retained with p =1. The lim-
iting case L ~ is equivalent to e qL 0 and J, p 1.] With this transformation, Eq. (2) becomes

p(q, ) =D'V g„f(q„k,)p(k, ), (5)

which, with the help of Eq. (3), can be written as

p(q, ) = [(al —a2e ' )Ap+(a3e ' a2)A—i]/P(q, ) e(q, ),
A„=(D V/2N) gk e * p(k, )/P(k, ).
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FIG. 1. Collective modes (thin lines) of a film containing
six 2DEG layers. The boundaries of the bulk plasmon band
(thick lines) and the single-particle continuum are also
shown.

Number of Layers
FIG. 2. Energies of collective modes plotted as a function

of the number of planes for a fixed in-plane momentum
q =10' cm '. The two thick horizontal lines are the bulk
plasmon band edges. For q =10' cm ', the penetration
depth of the surface plasmon is g —4d and the surface
plasmon level starts to split at a film thickness L —3g. The
lines through the points are only an aid to the eye.
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On multiplying Eq. (6) by Do V/2NP(q, ) or by Do Vexp( —iq, d)/2NP(q, ) and summing over q, we get two equa-
tions in Ao and A i which have a nontrivial solution only if

g(ai, a2) —1 g(a2, a3)
g(a2, ai) g(a3, a2) 1 (7)

g(x,y) =(Do V/2N) g„(x—ye ' ' ) [P(k,) e(k, )]
Equation (7) gives the dispersion relation of collective
modes of the film containing N 2DEG layers. Care
must be taken to exclude solutions of Eq. (7) coincid-
ing with e(q, ) =0 as we used division by e(q, ) in ob-
taining Eq. (6).
Now we give a numerical example, choosing param-

eters of sample 1 of Ref. 7 for which d =890 A,
e =13.1, eo = 1, m' =0.07m„and the electron density
is 7.3 X10" cm 2. The dispersion relations of the col-
lective modes are plotted in Fig. 1 for N=6. The
boundaries of the bulk plasmon band have also been
plotted. For each branch ai vanishes as q 0. This
follows from the fact that a single 2D layer has
ai~q'~2: The highest-energy branch has electrons in
each plane oscillating in phase, in which case the film
acts as a single 2DEG layer with electron density Nn,
provided that qL « 1.
The modes above the bulk plasmon band are the

t
Giuliani-Quinn surface plasmons. s For large values of
qL the surface plasmons on the two surfaces do not
couple and are degenerate, but for small qL the sym-
metric and antisymmetric combinations are split. ' For
negative n these surface modes occur below the bulk
plasmon band, 5 and for n=0 there are no surface
modes as all the collective modes lie inside the bulk
plasmon band. As the number of layers increases, the
bulk plasmon band becomes more densely populated
(see Fig. 2), becoming continuous as N
The penetration depth g of the surface plasmon is

given by5 e(q, co„,q, =i/g) =0 which gives g —4d
when q =105 cm '. For this fixed in-plane momen-
tum, the surface plasmon starts to split when L be-
comes comparable to —3g. This is shown in Fig. 2.
The analogous splitting for a 3DEG film is given by
r0,„(1+ e 'rL) ' 2, and is both theoretically' and experi-
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FIG. 3. Forward-scattered light P(co) (solid line) for
q =5.0 x 10 cm ' and y =0.3 me V. The intensity is mainly
concentrated at the surface plasmon energy —12.0 meV.
The total transmitted Raman intensity is different from If
only at the dashed line. The inset shows the scattering
geometry in which a photon of the incident laser beam
scatters forward while exciting a plasmon.

Energy Transfer cu (rneV)

FIG. 4. The solid line is the intensity of the backscattered
light, I~(co). The intensity is plotted on the same scale as in
Fig. 3. The peaks at 3.5 and 4.5 meV appear most strongly.
These are the modes that lie close to the bulk plasmon ener-
gy —4 meV. The total reflected Raman intensity differs
from Ib only at the dashed line.
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Discrete Plasmons in Finite Semiconductor Multilayers
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(Received 19 November 198')
%e observe discrete plasmons in layered 2D electron gases with a large, but finte, number af

periods. The twofold degeneracy of plasmon modes ~ith wave numbers in the first Brillouin zone
of the infinite system is lifted by the loss of complete periodicity in the finite system. These charac-
teristic discrete plasmon doublets are measured in inelastic-light-scattering spectra of multilayer
GaAs/(Alaa) As heterostructures.

PACS numbers: 71.45.Gm, 72.15.Nj, 73.40.Lq

qp= p, p= I, . . . , /V,2m (2)

is the perpendicular wave number and d is the super-

The charge-density excitations of layered two-
dimensional electron systems are the subject of current
theories that consider plasma modes in semifinite"
and finite3 systems. Remarkable new effects are
predicted for semiconductor superlattices. Giuliani
and Quinn' proposed a new class of surface plasmons.
They are free of Landau damping because quantization
of electron motion along the superlattice axis prevents
their decay into electron-hole pairs. Wu, Hawrylak,
and Quinn2 have calculated the anisotropy of charge-
density excitations on the lateral surface of a semicon-
ductor superlattice. Jain and Allen3 have investigated
the discrete plasmon spectrum of layered films. In-
elastic light scattering, widely used to probe collective
excitations in semiconductor superlattice, has been
suggested' ' as the experimental method to study
the new charge-density excitations. This Letter re-
ports the observation and interpretation of discrete
plasmons in inelastic-light-scattering spectra of
GaAs/(AlGa) As heterostructures. " The discrete
modes are observed in multilayers with relatively large
number of periods (N = 15), which demonstrates that
these effects are essential to plasma oscillations in
semiconductor superlattices. In the spectra we mea-
sure characteristic plasmon doublets. They are ex-
plained by the lifting of the degeneracy of pairs of
modes with wave numbers qp and 2m/d —qp in the
first Brillouin zone of the superlattice with period d.
In the infinite superlattice these modes are degenerate
because each 2D electron gas is at a plane of mirror
symmetry. The lifting of the degeneracy in finite mul-
tilayers is due to the loss of these symmetries.
A superlattice of 2D electron gases each with an

areal density n embedded in a material with dielectric
constant ez has a plasma frequency'2 '6

~p(q, qp) =~0(q)&(q, qp),
where q is the component of wave vector in the plane
parallel to the layers. %ith N

b — q, q&
ro02(q) [coshqd + I] p= ~

~'+ —~~ (q, qp)
where

(3)

+ [1 + cosqpd]q, qp (4)2N [coshqd —cosq pd ]2
and J = 1—exp( —Nqd). The existence of two
separate sets of modes is due to the lifting of the two-
fold degeneracy of the superlattice plasmons in the fin-
ite system.
Equations (3) and (4) yield the frequencies of the

plasmon pairs for all values of N. For values of qp
such that the spacings between co~(q, qp) for con-
secutive values of p is larger than 2co20(q)
x [coshqd + I ]6 -+ (q, qp), the mode frequencies can be
calculated within the first-order approximation

(uo2(q)[coshqd + 1]
26 (q, qp)

~ + ~~ (qqp)
(5)

In this limit the major effect of the finite number of
layers is the coupling of the degenerate pair with wave
vectors qp and q p= 2n/d —qp. It results in pairs of
modes that are symmetric and antisymmetric combina-
tions with frequencies

co'+ (q, qp) =(up'(q, qp) +cu02(q)F + (q, qp),

lattice period. coo(q) is the 2D plasma frequency, "
Q)o(q) = 2&tie q/V1 6s + 0.75q uF,

where m' is the electron effective mass and vF is the
Fermi velocity.

S (q, q p) = sinhqd/(coshqd —cosq pd )
is a structure factor for the superlattice.
For finite N the discrete plasmon modes are ob-

tained by the coupling among oscillations with fre-
tluencies co~(q, qp). '' When the layers are embedded
in an infinite dielectric the e-e-e geometry of Ref. 3 is
applicable and there are no surface modes. The equa-
tions for the plasmon frequencies are derived from Eq.
(7) of Ref. 3 by setting a

&

= a 3. We obtain two
separate sets of modes that are the solutions of'8
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F+ (q, qp) XLgsE@*6760][

[1—coshqd cos&d ] + [coshqd —cosq&d ]=J (7)N [coshqd —cosq&d ]'
This approximation gives exactly the same number of
different modes as in the more exact expressions of
the e-e-e geometry of Ref. 3 and of Eqs. (3) and (4).
Inelastic-light-scattering experiments have verified

the bulk plasmon dispersion of Eq. (1) in multiple
GaAs/(AIGa) As heterostructures with 15 ~ N
~20.5 9 In the results reported here we discovered
characteristic plasmon doublets described by Eqs. (6)
and (7) in GaAs/(AlGa)As multilayers with N = 15.
The multiple plasmon peaks are best resolved in spec-
tra measured with wave vectors near the "long
wavelength" limit, in which the q&d values are closer
to 2m.
%e studied several modulation-doped' multiple

GaAs/(AI„Gat „)As quantum well heterostructures.
We present the data from an n-type sample in which
the GaAs wells have a thickness dt = 258 A and the
(Alo 246ao 76)As barriers have d2 = 520 A. Fifteen
periods of d = d ~

+ d2 = 778 A were grown on
GaAs(001) substrates by molecular-beam epitaxy.
The free-electron density is 4&&10" cm 2 and their
mobility is p, =9x10 cm'/V sec. We have deter-
mined a lowest subband spacing of 13 meV. The con-
centration of carriers in the first excited subband is
less than 0.2x10" cm . For these parameters the
electron density peaks at the center of the quantum
well.
The spectra were excited with tunable dye lasers

operating in the cw mode in the wavelength range
6300 A( XL (7800 A. We report the results ob-
tained with wavelengths of 6760 and 7630 A. In both
cases the photon energies, 1.8342 and 1.6251 eV, are
in resonance with optical transitions of the GaAs quan-
tum wells. Low-temperature light-scattering spectra
were obtained in the nearly backscattering geometry of
Olego et al. 5 and also in conventional backscattering.
The in-plane component of the scattering wave vector
was tuned in the range 3 x 10 ( k ( 18x 10 cm ' by
changes in the angle between the normal to the layers
and the incident laser beam. The perpendicular com-
ponent k, was changed by variation of the incident
laser wavelength.
Figure 1 shows spectra excited with A.L

——6760 A.
The top spectrum was obtained in conventional back-
scattering and the two lower ones in nearly exact back-
scattering. %e are interested in the structures labeled
S (for strong) and W (for weak). The positions of
these peaks have a strong dependence on the in-plane
scattering wave vector k. This is unambiguous evi-

l7.s x to cd
g& Lx,~ ~j~

$

k * 8.5 x i04crn-I

J ! w

Q~rp

w
k = 5 5 x I04crn-I

dence that they arise from plasma oscillations of the
free electrons in the multilayers. Weaker structure can
be seen at lower and higher energies. The spectra
show also a broad scattering (between 7 and 15 meV)
that has no k dependence. The multiple structures in
Fig. 1 indicate plasma modes with well-resolved
discrete character. The stronger peaks are doublets,
which suggests that the multiplicity is due to the
finite-system effects described by Eqs. (6) and (7). In
fact, we show below that the measured plasmon fre-
quencies are interpreted by means of Eqs. (6) and (7)
with the q& value that is closest to k, .
The spectra in Fig. 1 are strikingly different from

the single broad band previously reported. 5 The spec-
tral differences arise from the larger value of k, at

i I I ] I i i J i !
0 2 4 6 8 IO l2 I4

ENERGY SwIFT rnev

FIG. 1. Inelastic-light-scattering spectra of discrete
plasmons taken at different values of the in-plane scattering
wave vector k. The spectra were excited with a laser
wavelength of A. L,

= 676D A.
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A.L =6760 A. For an estimated ' refractive index of
7i = 3.67 + 0.02 we obtain 2kL = 47r77/XL ——6.S2 x 10
cm '. lt yields k, =2kl [1——,

' (k/2kL) ] for conven-
tional backscattering and

k, = k, [1 (I-/2&)'] = 6.» 10' cm-'

in nearly exact backscattering. The value k, d =5.25
being closer to the "long wavelength" limit (k,d
=27r) than thOSe Of OlegO et al 'a.llOWS COupling tO
discrete plasmon doublets of wider separation. This
interpretation is supported by the spectra of Fig. 2 ob-
tained with XL =7630 A. In this case the lower value
of k, d = 4.55 allows scattering by plasma modes with
less sensitivity to finite system effects. In Fig. 2 the
k-dependent structure of the multilayer plasmon is
resolved only for the larger values of k. The stronger
features appear as a doublet, further evidence of finite

s
IS

4 = I3.8 x l04 crn l

system splittings predicted by Eqs. (5)—(7).
Figure 3 shows the dispersions of the major plasmon

peaks, strong and weak, measured in the light-
scattering spectra. For A.L =6760 A, with the larger
value of k, the plasmon dispersion displays a striking
departure from the nearly linear, acousticlike disper-
sion at the smaller value of k, . In these results the
finite-N effect is represented by about one-half the
spacings between the two strong peaks. On the other
hand, the separations between modes of consecutive
values of I8 are given by the spacings between the
high-energy weak and low-energy strong peaks (or,
equivalently, by the spacings between the low-energy
weak and high-energy strong peaks). In the quantita-
tive interpretation of the measured dispersions we as-
sume the e e -e-geometry of Jain and Allen. This
geometry is used because the top layer is a 520-A-thick
Alo 24Gao 76As barrier with a dielectric constant
nearly identical to that of the GaAs quantum wells.
We see in Figs. 1 and 3 that the separations between
modes of consecutive values of P are considerably
larger than the finite-W effects, and we conclude that
Eqs. (6) and (7) represent a reasonable first-order ap-
proximation to interpret our experiments.
The plasmon dispersions calculated with Eqs. (6)

and (7) are very sensitive to the number of layers N.
To fit the measured dispersions we assume in-plane
wave-vector conservation (k = q) and adjust the value
of N. Best agreement is obtained with %=14, one
fewer than the number of periods in the sample. 2'
The greatest sensitivity to the value of N occurs for
0.6~q «1.2X 10' cm '. In this range, the frequen-

k = 6.7 x lo CfA

k = 4.O x lO4Cm-'
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FIG. 2. Typical light-scattering spectra of discrete
plasrnons obtained with XL = 7630 A.
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FIG. 3. The points are the peak positions in light-
scattering spectra of discrete plasmons plotted as a function
of the in-plane scattering wave vectors. The lines are the
calculated discrete plasmon dispersions.
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Collective-Excitation Gap in the Fractional Quantum Hall Effect
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We present a theory of the collective excitation spectrum in the fractional quantum Hall-effect
regimes, in analogy with Feynman s theory for helium. The spectrum is in excellent quantitative
agreement with the numerical results of Haldane. Within this approximation we prove that a finite
gap is generic to any liquid state in the extreme quantum limit and that in this single-mode approxi-
mation gapless excitations can arise only as Goldstone modes for ground states with broken transla-
tion symmetry.
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where pk—=X exp(ik rj). In this single-mode ap-
proximation (SMA) the excitation energy is

&(k) =f'(k)/s(k), (3)

The fractional quantum Hall effect' (FQHE) is one
of the most remarkable many-body phenomena
discovered in recent years. Associated with the quanti-
zation of the Hall resistance is a nearly complete free-
dom from dissipation. The latter suggests the ex-
istence of an excitation gap, presumably due to many-
body correlations arising from the Coulomb interac-
tion. Considerable theoretical effort has been made to
understand the nature of the ground state which, at
least for values of the Landau-level filling factor of the
form v = I/m, where m is an odd integer, seems to be
quite well described by Laughlin's variational wave
function. 2 In this Letter we present a theory of the ex-
citation spectrum in the FQHE analogous to
Feynman's theory for the excitation spectrum of su-
perfluid ~He. 3
The Feynman argument for the excitation energy is

equivalent to the assumption that the dynamic struc-
ture factor4

S(%to) = X„l&n Ipklo& I'&(E„—Eo—co)
is of the form

SMA by noting that it works well in a variety of sys-
tems. In superfluid 4He it is exact at long wavelengths
and gives a good approximation to the entire phonon-
roton excitation curve. For the three- and two-
dimensional electron gas (no magnetic field) it is again
an excellent approximation to the plasmon at long
wavelengths and a rough fit to the entire single-particle
plasmon continuum at shorter wavelengths. For the
two-dimensional electron gas in a large magnetic field
it gives an accurate description at long wavelengths of
the magnetoplasmon mode near co,—= eH/mc. In gen-
eral the SMA is accurate at long wavelengths where
the oscillator strength in continuum modes is small or
wherever these continuum modes do not exist.
For the FQHE high-energy cyclotron modes are not

of primary interest. Of more relevance to the experi-
ment and the nature of ground-state correlation are
the low-lying excitations. Equation (3) tells us very
little about such modes. However, if we insist that the
excited states I n) in Eq. (1) lie within the lowest Lan-
dau level we get a version of Eq. (3) (the projected
SMA), which describes these low-lying excitations. To
do this we replace pk by its projection pk (bars indicate
projected quantities), i.e.,

b, (k) =f(k)/s(k).
With use of the projected density operators (z&
= x~ + lp~, k = kx + tky )

where the oscillator strength is

f(k) =N 'J dtocoS(k, to), (4)

N
pk= X exp(ikB/Bzj)exp(ik'zj/2),

j=1
(6)

and s(k) is the static structure factor.
We may gain some insight into the validity of the

s ( k) is easily shown to be

s(k) = s(k) —(1—e "~ )
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tinuity equation) is automatically satisfied.
For wave vectors beyond the roton minimum the

SMA rapidly breaks down and it can be shown that the
exact first moment of the excitation spectrum satu-
rates at a large finite value 2 ~E, ~/(I —v), where E, is
the cohesive energy. Nevertheless, it is possible for us
to estimate the excitation gap at k = ~ by supposing
that the lowest collective mode crosses over at the ro-
ton minimum from being a pure density oscillation to
a bound quasiparticle-quasihole exciton. 9 The asymp-
totic exciton dispersion is b,„(k)=b,„—u /k. Equat-
ing this to the SMA approximation to the gap at the
minimum yields b, y~3 t/5=0. 106, 0.025. These values
lie considerably above the results of hypernetted chain
calculations of Laughlin, At/3 t/5 0.057, 0.014, and
of Chakraborty, ' b, t~/3 t/s = 0.053, 0.014. However,
preliminary Monte Carlo results of Morf and Halpe-
rin' yield a larger value, b, t/3 0.094 + 0.005.
Haldane's small system calculations" yield a value
(extrapolated to X=~) of b, t/3 = 0.105 +0.005, in ex-

FIG. 1, Gap 5 vs wave vector for v = T,T. Circles are
from N=7 small spherical system calculations of Ref. 10.
Horizontal error bars indicate uncertainty in conversion of
angular momentum on a sphere to linear momentum. Tri-
angles are for N = 6 periodic boundary condition calculations
with a hexagonal unit cell of Ref. 10. The arrows indicate
the magnitude of the primitive reciprocal-lattice vectors of
the hexagonal signer crystal, for v = T,T. No small system
calculations exist for v = T.

cellent agreement with the present result. Meaningful
comparison of these results with experimental activa-
tion energies' must await a deeper understanding of
the role of disorder.
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• Light scattering can also reveal finite wave vector roton minima due to disorder. 
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Observation of Collective Excitations in the Fractional Quantum Hall EA'ect

A. Pinczuk, B. S. Dennis, L. N. PfeiAer, and K. West
3!Tcf T Bell Laboratories, Murray Hill, Ne~ Jersey 07974

(Received 27 January 1993)
A long wavelength, low-energy excitation of the fractional quantum Hall state at v= —,

' has been ob-
served by inelastic light scattering. The mode appears as a very sharp peak with marked temperature
and magnetic field dependence. Its energy is consistent with theoretical predictions for the collective gap
excitations of the incompressible quantum Auid. Spectra interpreted as q =0 collective spin-wave excita-
tions also display the strong dependence on field and temperature associated with the fractional quantum
Hall state.

PACS numbers: 73.40.Hm, 73.20.Dx, 73.20.Mf, 78.30.Fs

The 2D electron gas in the incompressible states of the
fractional quantum Hall effect (FQHE) should exhibit
new collective charge-density intra-Landau-level excita-
tions which, in the absence of kinetic energy changes, are
entirely due to electron-electron interactions in the con-
densate [1-3]. The excitations are associated with frac-
tionally charged quasiparticles that obey fractional statis-
tics [1-5]. The FQHE states should also have collective
spin-wave excitations associated with changes of the spin
degree of freedom in the lowest Landau level [6]. In the
spin-polarized states with v&1 the q =0 spin wave is re-
quired to be at the Zeeman energy by Larmor's theorem.
The emergence of low-lying charge-density modes, or
"gap excitations, " is one of the most significant new be-
haviors in the fractional quantum Hall eA'ect. These ex-
citations display characteristic "magnetoroton" minima
and the large wave-vector limit, q ~, represents the
infinitely separated quasiparticle-quasihole pairs that are
associated with the energy gaps of the incompressible
quantum fluid [1-7].
Gaps of the FQHE are obtained in activated magneto-

transport experiments, where residual-disorder effects
could be important even in the highest mobility systems
[8]. Intrinsic [9,10] and extrinsic [11]photoluminescence
spectra reveal anomalies in the FQHE regime. However,
the quantitative interpretation of photoluminescence re-
quires a detailed understanding of the complex dynamical
response of the electron gas in optical recombination pro-
cesses. The direct measurement of charge-density gap
excitations in the FQHE states has not been reported.
Optical experiments could access the long wavelength
modes. However, at small wave vectors q«1/ln, where
lo = (bc/eB) '~ is the magnetic length, intra-Landau-
level excitations have vanishing oscillator strength and
optical absorption methods are not expected to be ef-
fective [3].
The structure of the q =0 collective gap excitation of

the FQHE is intriguing. Girvin, MacDonald, and Platz-
man [3] speculated that two gap excitations each near the
magnetoroton minimum, at wave vectors —1/lo, could
pair to produce a two-roton bound state with q =0. The
q=0 mode has also been discussed within the Landau-

Ginzburg framework [12,13]. It was proposed that it
consists of two dipole excitations in a configuration that
has a quadrupole moment but no net dipole moment [13].
These considerations suggest to us that inelastic light
scattering, which as a two-photon process is sensitive to
excitations that lack an electric dipole moment, might be
the optical method to observe the gap excitations of the
FQHE.
In this Letter we report observations of collective exci-

tations in the FQHE by inelastic light scattering. In the
state with v= 3 a sharp low-energy peak is interpreted as
a q=0 collective gap excitation of the incompressible
state. Its spectra have the strong dependences on temper-
ature and magnetic field that are characteristic of the
FQHE [14]: The peak is observed only at temperatures
T ~1 K and within the narrow field range AB =0.5 T
centered at v= 3 . The mode occurs at energy hoE„
where E, =e /eplo and so is the dielectric constant of the
semiconductor. The measured energy 40=0.084 is in the
range of theoretical predictions for q =0 gap excitations.
The observation of this mode is direct evidence that the
incompressible quantum fluid of the FQHE supports
well-defined charge-density intra-Landau-level excita-
tion s.
Other long wavelength collective excitations are also

measured. In the energy range of intra-Landau-level ex-
citations a sharp peak at the energy of the Zeeman split-
ting of the free electrons is explained as the q =0 spin-
wave excitation. We also observe inter-Landau-level ex-
citations in which electrons from the condensate are pro-
moted to the next higher Landau level. Two modes occur
in these spectra. One at the cyclotron energy co, corre-
sponds to the q=0 magnetoplasmon [15]. The other
which is blueshifted from co, by an energy nearly equal to
40 could be explained as a higher-order inter-Landau-
level excitation, also involving a q=0 gap excitation [16].
In an alternate interpretation, this peak is explained as a
q =0 spin-Aip inter-Landau-level excitation, where the
blueshift is due to enhanced exchange in the spin-
polarized state [17,18]. The light scattering intensities of
the spin-wave and blueshifted inter-Landau modes have
the marked temperature and magnetic field dependence
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displayed by the q =0 gap excitation.
This work is carried out in asymmetric GaAs-Al„-

Ga~ —As single quantum wells with x=0.1. The growth
sequence starts with a 0.5 pm GaAs "buff'er" layer and
200 periods of a superlattice having 30 A of GaAs and
100 A of AI„Ga~ „As. This is followed by the 250 A
GaAs quantum well, the 1700 A AI„Ga~ „As top barrier
layer, and a 100 A GaAs layer. The Si doping in the top
barrier layer is set back at 700 A from the GaAs quan-
tum well. Th'e samples were designed to incorporate
"overdoping" of donors. In this manner, free charge
remaining in the doped layer acts to screen and smooth
the disorder potential due to ionized impurities. These
samples show low temperature electron mobilities in ex-
cess of 3X10 cm /Vsec. They also have very narrow
(FWHM & 0.2 meV) intrinsic optical emission peaks in
the FQHE regime, considerably sharper than those previ-
ously reported in quantum wells [9].
Because of parallel conduction under illumination, a

consequence of sample design, magnetoresistance oscilla-
tions could not be measured for v& 1 [19]. For this
reason, the states of the FQHE were characterized by
well-known optical anomalies of the intrinsic photo-
luminescence intensities [9]. An example of the anomaly
at v= 3 is shown in Fig. 1. The peaks labeled Lo and L0
are intrinsic photoluminescence doublets. They are

sharper than those in Ref. [9], but otherwise show similar
temperature and Geld dependences. The field of the
FQHE state with v= —,

' is taken as that of the maximum
intensity of Lo and minimum of L0. At incident powers
smaller than 10 W/cm this determination is in agree-
ment with the magnetotransport measurement of v= l.
A He cryostat with silica windows for optical access

was used in conjunction with a superconducting magnet.
Spectra were excited by the linearly polarized emission of
a tunable dye laser. The photon energies are resonant
with the sharp (—0.2 meV) optical transitions of the
GaAs quantum well. Spectra of the 2D electron gas were
excited with incident power densities of about 10
W/cm and recorded with multichannel detection. The
spectral resolution of 0.02 meV—=0.16 cm ' is due to pix-
el size in the charge-coupled-device camera (20 pm—=0.008 meV), to the FWHM of the laser line (0.01
meV), and to monochromator slit width (40 pm). We
consider here the sharpest inelastic light scattering peaks
with FWHM ~0.04 meV. The extremely narrow widths,
consistent with the high electron mobility, identify the
peaks as excitations of the free electrons. Interpretations
based on transitions of electrons weakly bound to impu-
rities are ruled out because, due to inhomogeneous
broadening, they have much wider spectral features [20].
The conventional backscattering geometry allows for
a small in-plane component k ~10 cm ' of the light
scattering wave vector. Under wave-vector conservation
long wavelength excitations with q =k « I/in=0 are ac-
tive.
The sharp peaks at 1.18 meV in Fig. 1 and 0.26 meV in

Fig. 2 are due to inelastic light scattering by low-lying
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FIG. 1. Temperature dependence of inelastic light scattering

spectra of a low-lying excitation of the FQHE at v= —,'. The
single quantum well has density n =8.5&10' cm . The inset
shows the 8 dependence of the 0.5 K spectra. The light scatter-
ing peak, labeled "gap excitation, " is interpreted as a q =0 col-
lective gap excitation. The bands labeled Lp and Lp comprise
the characteristic doublets of intrinsic photoluminescence. The
temperature dependence of the Lp and Lp intensities is due to
the optical anomaly at v = —,

' .

0.8 1524.28
1524.35
1524.44
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FIG. 2. Inelastic light scattering spectra of a low-lying exci-
ltation at v = —, . The sample is the same as in Fig. 1. The sharp

peak is identified as the q=0 spin-wave excitation. The back-
ground is due to Lp luminescence. (a) Temperature depen-
dence. (h} Dependence on incident photon energy hcoL, which
displays the large resonant enhancement close to the energy of
Lp.
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dilution refrigerator that is inserted in the cold bore of a
superconducting magnet with windows for optical access.
Cold finger temperatures are variable and as low as 50 mK.
The resonant inelastic light spectra were obtained with
photon energies vL close to the fundamental optical gap
of the GaAs SQW’s. The power density was kept below
1024 W!cm2. A conventional backscattering configura-
tion was used at an angle of incidence u [15]. The per-
pendicular component of magnetic field is B ! BT cosu,
where BT is the total field. For u ! 30± and a laser wave-
length of lL " 815 nm, the light scattering wave vector is
k ! #2vL!c$ sinu " 105 cm21 and kl0 & 0.1.

Figures 1(a) and 2(a) show spectra at n ! 1!3 and n !
2!5. The marked dependences of the intensities on vL are
characteristic of resonant light scattering measurements.
The peaks labeled SW are due to long wavelength spin
wave excitations of the spin polarized 2D electron sys-
tem [12–16]. There are three other peaks at n ! 1!3 and
four at n ! 2!5. These peaks are interpreted as collective
excitations of the FQH states because they show charac-
teristic temperature and filling factor dependencies of the
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FIG. 1. (a) Resonant inelastic light scattering spectra at n !
1!3. SW denotes the long wavelength spin wave excitation
at the Zeeman energy EZ ! gmBBT , where g ! 0.43 6 0.01.
Dotted lines indicate collective excitations of the FQH state.
(b) The dispersion of collective excitations at n ! 1!3. The
solid curve was scaled down from the ideal 2D result [10] by a
constant to help in assigning the observed modes. Solid squares
indicate results of calculations that incorporate the effect of finite
thickness [24].

quantum fluids. Inelastic light scattering due to collective
excitations in FQH states is observed only under extreme
resonance enhancements of widths as small as 100 meV.
The resonance enhancements depend on the energies of the
modes, implying that all the collective modes may not be
measured in a single spectrum.

In Fig. 1(a) the sharp peak at the highest energy
(0.92 meV) is the charge-density gap mode of the n ! 1!3
state at long wavelengths [12–16]. The two bands at
the lower energy are assigned to peaks in the DOS of
charge-density excitations. Specific assignments of these
bands are readily made by comparing the experimental
results with the calculated dispersions shown in Fig. 1(b).
The solid curve was scaled down, from the ideal 2D result
[10], by a constant to facilitate the assignment of the
observed modes. Solid squares indicate results of calcula-
tions that incorporate the effects of finite thickness of the
2D electron system [24]. The band at the lowest energy
(0.46 meV) is assigned to the critical point at the deep
magnetoron minimum in the dispersion of gap excitations.
The band at 0.68 meV is interpreted as a peak in the DOS
of modes with large wave vectors because for ql0 * 2 the
dispersion is flat. These results suggest the existence of
just one deep magnetoroton minimum at n ! 1!3.
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FIG. 2. (a) Resonant inelastic light scattering spectra at n !
2!5. Dotted lines denote collective excitations in the FQH state.
(b) The dispersion of collective excitations at n ! 2!5. The
solid curve was scaled down from the ideal 2D result [10] by
a constant, as in Fig. 1(b). Solid squares indicate results of
calculations that incorporate the effect of finite thickness [24].
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Neutral  modes  in  FQHE:  CF  excitons



Composite fermions

Strongly interacting electrons at  = weakly interacting composite fermions at B B* = B − 2mρϕ0

 = densityρ

B* = B − 2mρϕ0 (ϕ0 = hc/e) ν =
ν*

2mν* ± 1
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Fig. 2. Deriving FQHE from the IQHE through composite-fermionization. We (a) begin with an
integer quantum Hall state at ⌫⇤ = n, (b) attach two magnetic flux quanta to each electron to
convert it into a composite fermion, and (c) spread out the attached flux to obtain electrons in a
higher magnetic field. If the gap does not close during the flux smearing process, it produces a
FQH state at ⌫ = n/(2n+ 1). More generally, allowing the initial magnetic field to be positive or
negative, i.e. ⌫⇤ = ±n, and attaching 2p flux quanta produces FQHE at ⌫ = n/(2pn± 1).

understood IQHE serve as the paradigm for understanding the FQHE? This ques-
tion inspired the proposal that a new kind of fermions are formed, and their IQHE
manifests as the FQHE of electrons.17,18

The intuitive idea, explained in Fig. 2, is as follows.17 Let us begin with the
integer quantum Hall (IQH) state of non-interacting electrons at ⌫

⇤ = ±n in a
magnetic field B

⇤ = ⇢�0/⌫
⇤. The sign of B⇤ indicates whether it is pointing in the

positive or negative z direction. Now we attach to each electron an infinitely thin,
massless magnetic solenoid carrying 2p flux quanta pointing in +z direction. The
bound state of an electron and 2p flux quanta is called a composite fermione. The
flux added in this manner is unobservable. To see this, consider the Feynman path
integral calculation of the partition function, which receives contributions from all
closed paths in the configuration space for which the initial and the final positions
of electrons are identical, although the paths may involve fermion exchanges, which
produces an additional sign (�1)P for P pairwise exchanges. The excess or deficit
of an integral number of flux quanta through any closed path changes the phases
only by an integer multiple of 2⇡ and thus leaves the phase factors unaltered, and
the fermionic nature of particles guarantees that the phase factors of paths involv-
ing particle exchanges also remain invariant. The new problem defined in terms
of composite fermions is thus identical (or dual) to the original problem of non-
interacting electrons at B⇤. The middle panel of Fig. 2 thus represents the ⌫⇤ = ±n

integer quantum Hall (IQH) state of composite fermions in magnetic field B
⇤. (The

quantities corresponding to composite fermions are conventionally marked by an
asterisk or the superscript CF.)

This exact reformulation prepares the problem for a mean-field approximation
that was not available in the original language. Let us adiabatically (i.e., slowly
compared to ~/�, where � is the gap) smear the flux attached to each electron until
it becomes a part of the uniform magnetic field. At the end, we obtain particles

eThe bound state of an electron and a flux is a model of an anyon.12 When the flux is an even
integer number of flux quanta, the bound state comes a full circle into a fermion.

May 17, 2020 8:28 ws-rv961x669 Book Title Jain-Chapter page 9

Composite Fermions @ 30 9

Fig. 2. Deriving FQHE from the IQHE through composite-fermionization. We (a) begin with an
integer quantum Hall state at ⌫⇤ = n, (b) attach two magnetic flux quanta to each electron to
convert it into a composite fermion, and (c) spread out the attached flux to obtain electrons in a
higher magnetic field. If the gap does not close during the flux smearing process, it produces a
FQH state at ⌫ = n/(2n+ 1). More generally, allowing the initial magnetic field to be positive or
negative, i.e. ⌫⇤ = ±n, and attaching 2p flux quanta produces FQHE at ⌫ = n/(2pn± 1).

understood IQHE serve as the paradigm for understanding the FQHE? This ques-
tion inspired the proposal that a new kind of fermions are formed, and their IQHE
manifests as the FQHE of electrons.17,18

The intuitive idea, explained in Fig. 2, is as follows.17 Let us begin with the
integer quantum Hall (IQH) state of non-interacting electrons at ⌫

⇤ = ±n in a
magnetic field B

⇤ = ⇢�0/⌫
⇤. The sign of B⇤ indicates whether it is pointing in the

positive or negative z direction. Now we attach to each electron an infinitely thin,
massless magnetic solenoid carrying 2p flux quanta pointing in +z direction. The
bound state of an electron and 2p flux quanta is called a composite fermione. The
flux added in this manner is unobservable. To see this, consider the Feynman path
integral calculation of the partition function, which receives contributions from all
closed paths in the configuration space for which the initial and the final positions
of electrons are identical, although the paths may involve fermion exchanges, which
produces an additional sign (�1)P for P pairwise exchanges. The excess or deficit
of an integral number of flux quanta through any closed path changes the phases
only by an integer multiple of 2⇡ and thus leaves the phase factors unaltered, and
the fermionic nature of particles guarantees that the phase factors of paths involv-
ing particle exchanges also remain invariant. The new problem defined in terms
of composite fermions is thus identical (or dual) to the original problem of non-
interacting electrons at B⇤. The middle panel of Fig. 2 thus represents the ⌫⇤ = ±n

integer quantum Hall (IQH) state of composite fermions in magnetic field B
⇤. (The

quantities corresponding to composite fermions are conventionally marked by an
asterisk or the superscript CF.)

This exact reformulation prepares the problem for a mean-field approximation
that was not available in the original language. Let us adiabatically (i.e., slowly
compared to ~/�, where � is the gap) smear the flux attached to each electron until
it becomes a part of the uniform magnetic field. At the end, we obtain particles

eThe bound state of an electron and a flux is a model of an anyon.12 When the flux is an even
integer number of flux quanta, the bound state comes a full circle into a fermion.



CF theory of neutral excitations

• The ground state at  is  filled levels of composite fermions; its quasihole is a missing 
CF; quasiparticle is an isolated CF; and neutral excitations are CF-particle hole pairs.  The wave functions 
of these are obtained from the known wave functions at integer fillings by composite-fermionization. 

• Question: How well does the CF theory work? What all can it explain?

ν = n/(2n + 1) ν* = n

Ψ n
2n + 1

= PLLL Φn ∏
j<k

(zj − zk)2



Comparison with exact diagonalization studies

• The CF exciton theory obtains the dispersions of the neutral excitations at all 
 fractions qualitatively and quantitatively.ν = n/(2pn ± 1)



Rotons of composite fermions: Comparison between theory and experiment
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This paper reports results of our comprehensive theoretical study of the rotons of composite fermions. The
calculated roton energies at Landau-level fillings of 1/3, 2/5, and 3/7 are in excellent agreement with the
energies measured in inelastic light scattering and ballistic phonon absorption experiments.

I. INTRODUCTION

Interacting electrons in the lowest Landau level capture an
even number of flux quanta to form a quantum fluid of com-
posite fermions, which has been the subject of intense inves-
tigation over the last decade.1–3 At certain special filling fac-
tors this fluid is incompressible, which results in the
phenomenon of the fractional quantum Hall effect !FQHE".4
This paper is concerned with the neutral excitations of the
incompressible states of composite fermions. These were
first observed by Pinczuk and co-workers5,6 by inelastic light
scattering at a filling factor #!1/3, and subsequently by sev-
eral groups by light7,8 as well as ballistic phonon9–11 scatter-
ing at other filling factors as well !e.g., at #!2/5, 2/3, and
3/7".
Theoretically, the neutral excitations of the FQHE were

first considered by Girvin, MacDonald, and Platzman
!GMP"12 in 1985. By analogy to the Feynman-Bijl wave
function for the collective excitation of superfluid 4He,

$k
FB!$0%

j
e"ik•rj !1"

they considered the so-called single-mode-approximation
!SMA" variational wave function

$k
SMA!PLLL $0%

j
e"ik•rj !2"

for the neutral excitation of incompressible fractional quan-
tum Hall effect !FQHE" states, which will be referred to
below as the GMP mode. Here $0 is the ground state wave
function, % je"ik•rj is the density operator, k is the wave
vector, rj is the position of the j th particle, and PLLL is the
lowest Landau level !LL" projection operator. The dispersion
obtained from this was shown to have a finite energy in the
limit of small wave vectors, and to possess a minimum at a
finite wave vector, where the neutral excitation is called the
‘‘roton,’’ again by analogy to 4He. Rotons are of special
significance in the FQHE since they are the lowest-energy
excitations, there being no phononlike massless mode at
small wave vectors, and therefore determine the low tem-
perature thermodynamics of the FQHE. We shall see below
that the wave function $k

SMA is a reasonable approximation at
#!1/3 at small to intermediate wave vectors, but it is inad-
equate at filling fractions other than 1/3. Interestingly, the
roton energy predicted by the Feynman-Bijl wave function

$k
FB for 4He was also not accurate, being off by a factor of 2
compared to experiment, but after incorporating backflow
corrections13 and further improvements,14 an excellent agree-
ment with experiment was obtained, which is recognized as
one of the major triumphs of the theory of 4He. No backflow
correction is required for the wave function in Eq. !2",12 and
it is not clear how one might go about modifying it. We will
see that an understanding of the physics of the ground state
contains the clue to the resolution of this puzzle.
A different principle for obtaining the wave function of

the neutral excitation suggested itself within the framework
of the composite fermion !CF" theory of the fractional quan-
tum Hall effect.3,1,2 A composite fermion is the bound state
of an electron and an even number of magnetic flux quanta !a
flux quantum is defined as &0!hc/e), formed when elec-
trons confined to two dimensions are exposed to a strong
magnetic field. According to this theory, the interacting elec-
trons at the Landau-level filling factor #!n/(2pn#1), n
and p being integers, transform into weakly interacting com-
posite fermions at an effective filling #*!n; the ground state
corresponds to n filled CF-LL’s, and the neutral excitation to
a particle-hole pair of composite fermions, called the CF
exciton. We shall see that the CF exciton in general has
several minima in its dispersion; at the lowest-energy mini-
mum the neutral excitation is called the fundamental CF ro-
ton !or simply the CF roton", and the other minima are
known as the secondary CF rotons. The Jain wave functions
for the CF ground state and the CF exciton are constructed
by analogy to the wave functions of the electron ground state
at filling factor n, 'n

gs , and its exciton, 'n
ex :

(n/!2pn$1 "
gs !PLLL)

j%k
!z j"zk"2p'n

gs , !3"

(n/!2pn$1 "
ex !PLLL)

j%k
!z j"zk"2p'n

ex , !4"

where z j!x j$iy j is the position of the j th particle, and
PLLL denotes the projection of the wave function into the
lowest Landau level. 'n

gs and 'n
ex are constructed for non-

interacting electrons, and are therefore fully known.
(n/(2pn$1)

gs and (n/(2pn$1)
ex have been found to be extremely

accurate in tests against exact diagonalization results avail-
able for small systems,3,15,16 which convincingly establish
the validity of the CF exciton description of the lowest-
energy neutral mode for all FQHE states in the lowest Lan-
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and !k
SMA are different. The latter treats all electrons in the

ground states in an equivalent manner, whereas the former
excites only a composite fermion from the topmost Landau
level. This clarifies why the two are most similar at 1/3 "in
fact, identical in the limit of k→0 #Ref. 34$% where only one

CF LL is occupied. Further, in !k
SMA the application of the

density operator degrades the correlations in the ground
state, but in &ex the correlations between electrons #through
the Jastrow factor$ are built in after creating the excitation in
'n , which, as shown by our results, is a more accurate ap-
proach. It is not surprising that an understanding of the phys-
ics of the ground state is crucial for an understanding of the
excitations as well.
Figure 2 shows that the finite thickness of the wave func-

tion reduces the energy of the exciton significantly. Of spe-
cial interest are the energy of the CF exciton in the limit
kl0→0 and the energies of the fundamental and secondary
rotons. The thermodynamic limit of these energies are ob-
tained by an extrapolation of the energies obtained from fi-
nite systems, as shown in Figs. 3 and 4. Since only discrete
values of k are available at finite N, the energy of the roton is

FIG. 2. The dispersions of the CF exciton at (!3/7 for a zero
width system, for a heterojunction #with density 1.5"1011 cm#2),
and for a square quantum well of width 30 nm #with density 0.5
"1011 cm#2). The dispersions are for a system of 63 composite
fermions, obtained by interpolation through the discrete k values
available in the study.

FIG. 3. N dependence of the energies of the fundamental and
secondary CF rotons #diamonds and circles$ and of the exciton en-
ergy in the long-wavelength limit #squares$. For each N, the energy
of the rotons is obtained by fitting a parabola through three or more
points in the vicinity of the minimum. The energy in the thermody-
namic limit is ascertained by a linear fit through the energies as a
function of 1/N . The parameters correspond to the experiment of
Kang et al. #Ref. 7$.

FIG. 4. N dependence of the energies of certain fundamental and
secondary CF rotons #diamonds and circles$, and of the exciton
energy in the long-wavelength limit #squares$ for a heterojunction
sample with electron density )!1.5"1011 cm#2. The parameters
correspond to an experiment of Mellor et al.9

TABLE I. Energies of the CF roton and the long-wavelength
neutral excitation at 1/3, 2/5, and 3/7, for a strictly two-dimensional
system, in units of e2/*l0. Also given is an estimate for the CF
roton ‘‘mass,’’ mR*+,R*me!B"T% , defined in Eq. #30$, where me is
the electron mass in vacuum. The statistical uncertainty in the last
digit#s$ is shown in parentheses.

Mode ( Energy ,R*

kl0!0 1/3 0.15 -
2/5 0.087#1$ -
3/7 0.068#5$ -

roton 1/3 0.066#1$ 0.0079#3$
2/5 0.037#1$ 0.0090#11$
3/7 0.027#3$ 0.0095#32$
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obtained by fitting the points near the minimum to a para-
bolic dispersion

!k
ex!!"

"2#k#k0$2

2mR*
#30$

for each N, and then extrapolating ! to the thermodynamic
limit. We note that it becomes necessary to go to larger sys-
tems as the effective filling of composite fermions increases;
for example, for %!3/7, it was important to study up to 63

FIG. 5. The energies of the fundamental and the secondary ro-
tons #solid and dash-dotted lines, respectively$ and of the CF exci-
ton in the long-wavelength limit #dashed line$ as a function of the
density for a heterojunction. Experimental energies are also shown,
taken from Refs. 8 #circle$, 9 #diamond$, 10 #square$, and 11
#down-triangle$; the filled symbols correspond to the roton, and the
empty ones to the long-wavelength mode.

FIG. 6. The energies of the fundamental and the secondary ro-
tons #solid and dash-dotted lines, respectively$ and of the CF exci-
ton in the long-wavelength limit #dashed line$ as a function of den-
sity for the square-quantum-well geometry for two different
quantum-well widths.

FIG. 7. Same as in Fig. 6 but for quantum wells of width 25 and
30 nm. The experimental results are taken from Refs. 5 #up-
triangle$ and 6 #right-triangle$; the filled #empty$ symbols corre-
spond to the roton #long-wavelength mode$.

TABLE II. Comparison of theory and experiment for the roton
energy as well as the energy of the long-wavelength exciton, quoted
in units of e2/&l0. In Ref. 9, the roton energies were determined for
2/3, 3/5, and 4/7, which, assuming particle-hole symmetry, are the
same as the roton energies at 1/3, 2/5, and 3/7, when measured in
units of e2/&l0.

kl0!0 Roton
% experiment theory experiment theory Reference

1/3 0.082 0.104#1$ 0.044 0.050 #1$ 6
0.084 0.113#1$ - 0.052#1$ 5
- 0.090#2$ 0.041#2$ 0.045#1$ 9

0.074 0.095#1$ 0.047 0.047#1$ 8
- 0.092#1$ 0.036#5$ 0.045#1$ 10

2/5 - 0.054#1$ 0.021#2$ 0.026#1$ 9
- 0.055#1$ 0.025#3$ 0.027#1$ 11

3/7 - 0.044#2$ 0.014#2$ 0.017#2$ 9
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for transducers with different periodicities down
to 120 nm (24 GHz). By driving these trans-
ducers in a contactless fashion at double the
frequency in order to preferentially excite their
second harmonic (24), it is possible to cover
momenta up to 10.4 × 108 m–1. (ii) A second
high-frequency generator irradiates the active-
device region with a wave at frequency fexc.
When the photon energy hfexc matches the
energy of an excitation at wave vector kSAW of
the 2DES, resonant absorption may occur.
Resonant absorption heats up the system and
causes a thermal redistribution of charge
carriers. (iii) Incident laser light at a wavelength
of 780 nm triggers luminescence. Its spectrum is
sensitive to the thermal distribution of the
charge carriers. By comparing the luminescence
in the absence and presence of the microwave
radiation fexc, we built the differential spectrum
so as to reveal the resonant absorption profile.
The integral of the absolute value of the
differential spectrum across the recorded spec-
tral range serves as a measure of the absorption
strength.

This technique (and its derivatives) can
also be applied to detect the electron-spin
resonance and the composite fermion cyclo-
tron resonance mode at a large nonzero wave
vector (26, 27). Studies on the well-known
magnetoplasmon excitations at moderate mag-
netic fields have confirmed that with this
technique, excitations are triggered at a wave
vector with magnitude kSAW. A typical exam-
ple of such investigations has been included as
supporting online material (SOM) text. The
influence of the SAW seems to be limited to

aiding the transfer of momentum. Apparently,
no absorption of the SAW phonon takes place,
as is demonstrated in the SOM for the
electron-spin resonance (SOM text). Figure 2
plots an example of the microwave absorption
strength as a function of the applied magnetic
field and the incident microwave frequency
fexc at large magnetic fields around filling
factor 1/2. Figure 2A displays a color rendition
covering the magnetic field and frequency
parameter space, and Fig. 2B highlights
selected line scans at fixed values of the
magnetic field. At low values of the effective
magnetic field, two resonances or maxima in
the absorption strength appear for each fre-
quency fexc. They are symmetrically arranged
around filling factor 1/2. They have a width
of ~10 GHz or less (which corresponds to
40 meV) and can be attributed to the cyclo-
tron resonance of composite fermions at the
nonzero wave vector defined by the SAW
(26). The frequency drops approximately lin-
early to zero as these resonances approach
filling factor 1/2. It reflects the linear de-
pendence of the composite fermion cyclo-
tron frequency wc,CF on the effective magnetic
field.

Further away from filling factor 1/2, how-
ever, deviations from a linear dependence are
apparent in Fig. 2A. The resonance frequency
starts to oscillate as the effective magnetic field
increases. Some prominent fractional fillings
have been marked in Fig. 2A and reveal that
the largest deviations from a linear dependence
occur at fields in which the 2DES is expected
to condense into a fractional quantum Hall

fluid. Figure 3A depicts a smaller region of the
(B , fexc)–parameter space. It has been recorded
with longer accumulation times and with a
smaller magnetic field step size in order to
better bring out the oscillatory features. For the
parameters of the experiment, the maxima at
fillings 2/5, 3/7, and 4/9 are the optical
signatures for the formation of an incom-
pressible fractional quantum Hall state that
can be interpreted as an integer quantum Hall
state of composite fermions. The resonance
frequency yields the energy gap, which is the
energy cost required to create a neutral quasi
particle–quasi hole excitation at momentum
kSAW. The strongest fractional filling factor, 1/3,
is out of reach because the energy gap ex-
ceeds the maximum accessible frequency fexc
of 50 GHz.

We emphasize that the oscillatory features in
the absorption due to the correlation-driven con-
densation of composite fermions in incompres-
sible states are only observable at the lowest
temperatures. These features vanish for the 4/9
and 3/7 fractional quantum Hall states upon in-
creasing the temperature (T ) to 300 mK, whereas
the feature is strongly reduced for the 2/5 state.
This temperature-dependent behavior is illus-
trated in Fig. 3B. Even though the increase in T
to 300 mK destroyed the formation of the more
fragile fractional quantum Hall states, the com-
posite particles themselves survive because at the
cyclotron resonance frequency, resonant absorp-
tion can be observed up to considerably higher
temperatures. Further temperature-dependent
features of the resonances are deferred to the
SOM text.

A B C
Fig. 4. Roton dispersion
at filling factors 2/5, 3/7,
and 4/9. (A) Resonant
absorption frequency as
a function of the applied
magnetic field for two dif-
ferent momentum values
kSAW = 2.6 × 107 m–1 and
3.9 × 107 m–1 at an
electron density of 5.1 ×
1010 cm–2 and a temper-
ature of 30 mK. (B) Reso-
nance frequency at filling
factor 3/7 as a function of
momentum kSAW for two
different values of the
carrier density. (C) Dis-
persion of the resonance
frequency at filling factors 2/5, 3/7, and 4/9 on normalized energy and momentum axes. Data
points originate from measurements taken with three different transducer periodicities (at the
fundamental and second harmonic) and a large set of densities ranging from approximately 3 ×
1010 to 7 × 1010 cm–2. Data points collected at different electron densities but for one and the
same kSAW transducer have the same color. Solid curves are smooth fits to Monte Carlo
simulations described previously (28).

22 MAY 2009 VOL 324 SCIENCE www.sciencemag.org1046

REPORTS

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 01, 2022

Kukushkin et al. 
Science, 324 (2009)

The CF excitons at  have  primary roton minima.ν = n /(2n ± 1) n

VOLUME 86, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 19 MARCH 2001

In Fig. 2(a) the highest energy band is also interpreted as
the long wavelength gap mode of the n ! 2!5 state. The
three bands at lower energies are assigned to three criti-
cal points in the dispersion of the modes. A comparison
of spectra in Figs. 1(a) and 2(a) indicates that at n ! 2!5
there are additional critical points at wave vectors ql0 * 1.
The result implies that in the dispersion of gap excitations
at n ! 2!5 there is one more magnetoroton minimum.
Specific assignments are made here also with calculated
dispersions shown in Fig. 2(b). Two lower energy modes
at 0.28 and 0.33 meV are assigned to two roton minima in
the dispersion. The mode at 0.44 meV could be interpreted
as the local maximun between two rotons or the q ! `
mode. We could not make a more specific assignment be-
cause observations of critical points of the DOS determine
mode energies but do not reveal mode wave vectors.

We note that the magnetoroton modes are not always
stronger than spectral features assigned to other modes,
while current theory predicts that spectral weight is largest
for modes close to rotons [25]. Resonant inelastic light
scattering involves complex interactions in the quantum
liquids. It is likely that measured light scattering intensities
may not be deduced in a simple way from spectral weights
of dynamic structure factors.

The dispersions of collective gap excitations are key pre-
dictions of theories of quantum liquids in the FQHE. The
results in Figs. 1 and 2 show that inelastic light scatter-
ing experiments provide comprehensive characterizations
of collective gap modes that are crucial tests of these theo-
ries. The calculations in Figs. 1(b) and 2(b), marked as
solid squares, are carried out within a CF framework with
rigorous treatment of the finite widths and geometries of
SQW samples [10,24]. The evaluations that incorporate
the finite width of the 2D layer show good agreement (typi-
cally better than 20%) with experiments. Such agreement
is significant because the uncertainty in the evaluation of
the finite width corrections can be as large as 20% [10,26].

The spectra in Figs. 1(a) and 2(a) reveal marked dif-
ferences between long wavelength (q " 0) modes at n !
1!3 and 2!5. The band of the q " 0 mode at n ! 1!3
is rather sharp (FWHM , 0.05 meV). On the other hand,
the band of the long wavelength mode at n ! 2!5 dis-
plays a much broader line shape with a FWHM of about
0.2 meV. The difference suggests a link to the differ-
ent magnetoroton structures in the dispersions of the gap
modes.

At n ! 1!3 the energy of the q " 0 mode (0.92 meV)
is exactly twice the energy of the magnetoroton minimum
(0.46 meV). This observation supports the early conjec-
ture of Girvin and co-workers that the lowest long wave-
length charge-density mode is a two-roton bound state [5].
A two-roton bound state occurs in numerical studies of
finite systems [25], and was recently confirmed by CF cal-
culations [11]. Our measurements suggest that the bind-
ing energy of the two-roton state could be relatively small,
probably less than the width of the roton band in Fig. 1(a).

The two-roton character of the long wavelength modes is
further supported by the results in Fig. 3, where measured
q " 0 mode energies are twice the roton energies for den-
sities in the range of n ! 2.4 3 1010 1.2 3 1011 cm22

[27]. Numerical studies show that the q " 0 mode energy
of single quasiparticle-quasihole pair excitation, as shown
in Fig. 1(b), is substantially higher than twice the roton
energy [10].

Current theory is not very specific about the character
of the q " 0 mode at n ! 2!5. In the data of Fig. 2(a)
the q " 0 mode energy occurs in the range of twice the
roton energies. This suggests that the q " 0 mode here
could also be related to excitations built of two-roton states.
However, the existence of multiple rotons adds more pos-
sible combinations of multiple roton states for q " 0 ex-
citation, which may account for the broader linewidth at
n ! 2!5. This is an aspect of collective excitations of
states with n . 1!3 that requires further experimental and
theoretical study.

We also consider trends in the energies of the charge-
density excitation gap of the quantum liquids in FQH
states. Figure 4 summarizes results for states with n !
1!3, 2!5, and 3!7. In this figure we include the single ex-
citation mode observed at n ! 3!7 (at a very low energy
0.08 meV) [16]. Given the very low energy of this mode,
we tentatively assign it to a magnetoroton mode of the 3!7
state. However, we also note the possibility that this mode
could be associated with the roton of spin excitations of
CF’s as suggested in a recent theoretical study [28]. If
the mode at n ! 3!7 is a roton in the charge-density ex-
citation gap, this figure reveals that the lowest collective
excitation gaps represented by roton excitations decrease
quite rapidly as the filling factor approaches 1!2. This is
consistent with the fact that we could not observe any col-
lective excitation mode in the fractional states in the range
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FIG. 3. Collective gap excitations at n ! 1!3 from samples
with various densities (n) within 2.4 3 1010 # n # 1.2 3
1011 cm22. Collective gap excitation energies are measured in
terms of the Coulomb energy, EC ! e2!el0.
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Observation of Multiple Magnetorotons in the Fractional Quantum Hall Effect
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Magnetorotons in the dispersions of collective gap excitation modes of fractional quantum Hall liquids
are measured in resonant inelastic light scattering experiments. Two deep magnetoroton minima are
observed at n ! 2!5, while a single deep minimum is resolved at n ! 1!3. The observations are the first
evidence of multiple roton minima in gap excitations of the quantum liquids. The results support Chern-
Simons and composite fermion calculations that predict multiple roton minima for states with n . 1!3.
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The states of the fractional quantum Hall effect (FQHE)
are incompressible quantum liquids with behaviors dic-
tated by fundamental interactions [1,2]. Condensation of
2D electron systems into quantum liquids is manifested
in distinctive low-lying collective excitation modes built
from neutral quasiparticle-quasihole pairs in the same
Landau level [3–5]. The energy (v) vs wave vector (q)
dispersion relations of the modes display characteristic
features such as magnetoroton minima in the dispersions
of charge-density gap excitations. The roton minima,
caused by excitonic bindings in the neutral pairs, occur at
wave vectors q " 1!l0, where l0 !

p

h̄c!eB is the mag-
netic length. Analytical studies and numerical calculations
have explored the low-lying collective modes of FQH
liquids within composite fermion (CF) and Chern-Simons
(CS) frameworks [6–11]. Experiments that probe these
collective modes offer crucial tests of theories of the
quantum liquid.

Resonant inelastic light scattering by low-lying
charge-density and spin-density collective modes has been
reported at filling factor n ! 1!3 [12–14]. These experi-
ments measure long wavelength modes and peaks in the
density of states (DOS) due to critical points in the disper-
sions at magnetoroton minima. In more recent work we
reported light scattering by modes at fractional Landau
level fillings of n ! p!#2p 1 1$, (p ! integer), within
1!3 # n # 2!3 [15,16].

In this Letter we report resonant inelastic light scattering
measurements of the low-lying charge-density excitations
at filling factors n ! 2!5 and 1!3. The spectra are inter-
preted within a framework in which collective excitation
modes are described by energy vs wave vector dispersion
relations. The major consequence of weak residual disor-
der in the quantum Hall states is the activation of modes
with wave vectors ql0 * 1 that are larger than the light
scattering wave vector k [17,18]. Peaks in the spectra are
assigned either to long wavelength modes, with k ! q, or
to peaks in the DOS such as those arising from the critical
points at magnetorotons in the mode dispersions.

We find that spectra at n ! 2!5 display significant dif-
ferences from those at n ! 1!3. At n ! 1!3 there is a

single deep magnetoroton minimum and at n ! 2!5 we
identify an additional roton minimum. There are also
marked differences in the spectral line shapes of modes
with q " 0 that are explained as another manifestation
of the multiple roton structure at n ! 2!5. To the best
of our knowledge, these results are the first experimental
evidence of multiple rotons in the dispersions of collective
excitations of FQH states with n . 1!3.

The evidence of two rotons in the mode dispersion of
the state with n ! 2!5 supports key predictions of CS and
CF theories of the FQH liquids [9,19–21]. The difference
in roton structures of collective excitations in the states at
n ! 2!5 and 1!3 can be visualized within the picture in
which the FQHE is described as the integer QHE of com-
posite fermions. In this picture, collective excitations of
n ! 1!3 and n ! 2!5 states are conceived as excitations
of spinless n ! 1 and n ! 2 integer quantum Hall states
of CF’s, respectively. The existence of roton minima in the
dispersion of collective excitations can be understood from
the insight on the structures of the wave functions in Lan-
dau levels. Magnetoroton minima are due to the attractive
Coulomb interaction in a quasiparticle-quasihole pair of
separation x ! ql2

0 [3,22]. This interaction is maximized
when the overlap of the wave functions of ground and ex-
cited states is largest. The existence of multiple rotons
naturally comes from multiple nodes in wave functions of
higher Landau levels. We note that the dispersion of inter-
Landau level excitations at n ! 1, like the collective mode
dispersion at n ! 1!3, has a single roton [3]. On the other
hand, the roton structure at n ! 2!5 could be similar to
that of inter-Landau level excitations at n ! 4 (or spinless
n ! 2), which displays multiple roton minima [23].

We studied the high quality 2D electron system in single
GaAs quantum wells (SQW) of widths d ! 250 330 Å.
Electron densities are in the range of n ! 2.4 3 1010

1.2 3 1011 cm22. The low temperature and low field
electron mobilities are m * 5 3 106 cm2!V sec. Sample
design was optimized for optical experiments. This de-
sign results in large parallel conductivity at fields of n , 1
that prevents measurement of activated magnetoresistivity.
Samples were mounted on the cold finger of a 3He!4He
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dilution refrigerator that is inserted in the cold bore of a
superconducting magnet with windows for optical access.
Cold finger temperatures are variable and as low as 50 mK.
The resonant inelastic light spectra were obtained with
photon energies vL close to the fundamental optical gap
of the GaAs SQW’s. The power density was kept below
1024 W!cm2. A conventional backscattering configura-
tion was used at an angle of incidence u [15]. The per-
pendicular component of magnetic field is B ! BT cosu,
where BT is the total field. For u ! 30± and a laser wave-
length of lL " 815 nm, the light scattering wave vector is
k ! #2vL!c$ sinu " 105 cm21 and kl0 & 0.1.

Figures 1(a) and 2(a) show spectra at n ! 1!3 and n !
2!5. The marked dependences of the intensities on vL are
characteristic of resonant light scattering measurements.
The peaks labeled SW are due to long wavelength spin
wave excitations of the spin polarized 2D electron sys-
tem [12–16]. There are three other peaks at n ! 1!3 and
four at n ! 2!5. These peaks are interpreted as collective
excitations of the FQH states because they show charac-
teristic temperature and filling factor dependencies of the
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FIG. 1. (a) Resonant inelastic light scattering spectra at n !
1!3. SW denotes the long wavelength spin wave excitation
at the Zeeman energy EZ ! gmBBT , where g ! 0.43 6 0.01.
Dotted lines indicate collective excitations of the FQH state.
(b) The dispersion of collective excitations at n ! 1!3. The
solid curve was scaled down from the ideal 2D result [10] by a
constant to help in assigning the observed modes. Solid squares
indicate results of calculations that incorporate the effect of finite
thickness [24].

quantum fluids. Inelastic light scattering due to collective
excitations in FQH states is observed only under extreme
resonance enhancements of widths as small as 100 meV.
The resonance enhancements depend on the energies of the
modes, implying that all the collective modes may not be
measured in a single spectrum.

In Fig. 1(a) the sharp peak at the highest energy
(0.92 meV) is the charge-density gap mode of the n ! 1!3
state at long wavelengths [12–16]. The two bands at
the lower energy are assigned to peaks in the DOS of
charge-density excitations. Specific assignments of these
bands are readily made by comparing the experimental
results with the calculated dispersions shown in Fig. 1(b).
The solid curve was scaled down, from the ideal 2D result
[10], by a constant to facilitate the assignment of the
observed modes. Solid squares indicate results of calcula-
tions that incorporate the effects of finite thickness of the
2D electron system [24]. The band at the lowest energy
(0.46 meV) is assigned to the critical point at the deep
magnetoron minimum in the dispersion of gap excitations.
The band at 0.68 meV is interpreted as a peak in the DOS
of modes with large wave vectors because for ql0 * 2 the
dispersion is flat. These results suggest the existence of
just one deep magnetoroton minimum at n ! 1!3.
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FIG. 2. (a) Resonant inelastic light scattering spectra at n !
2!5. Dotted lines denote collective excitations in the FQH state.
(b) The dispersion of collective excitations at n ! 2!5. The
solid curve was scaled down from the ideal 2D result [10] by
a constant, as in Fig. 1(b). Solid squares indicate results of
calculations that incorporate the effect of finite thickness [24].
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dilution refrigerator that is inserted in the cold bore of a
superconducting magnet with windows for optical access.
Cold finger temperatures are variable and as low as 50 mK.
The resonant inelastic light spectra were obtained with
photon energies vL close to the fundamental optical gap
of the GaAs SQW’s. The power density was kept below
1024 W!cm2. A conventional backscattering configura-
tion was used at an angle of incidence u [15]. The per-
pendicular component of magnetic field is B ! BT cosu,
where BT is the total field. For u ! 30± and a laser wave-
length of lL " 815 nm, the light scattering wave vector is
k ! #2vL!c$ sinu " 105 cm21 and kl0 & 0.1.

Figures 1(a) and 2(a) show spectra at n ! 1!3 and n !
2!5. The marked dependences of the intensities on vL are
characteristic of resonant light scattering measurements.
The peaks labeled SW are due to long wavelength spin
wave excitations of the spin polarized 2D electron sys-
tem [12–16]. There are three other peaks at n ! 1!3 and
four at n ! 2!5. These peaks are interpreted as collective
excitations of the FQH states because they show charac-
teristic temperature and filling factor dependencies of the
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FIG. 1. (a) Resonant inelastic light scattering spectra at n !
1!3. SW denotes the long wavelength spin wave excitation
at the Zeeman energy EZ ! gmBBT , where g ! 0.43 6 0.01.
Dotted lines indicate collective excitations of the FQH state.
(b) The dispersion of collective excitations at n ! 1!3. The
solid curve was scaled down from the ideal 2D result [10] by a
constant to help in assigning the observed modes. Solid squares
indicate results of calculations that incorporate the effect of finite
thickness [24].

quantum fluids. Inelastic light scattering due to collective
excitations in FQH states is observed only under extreme
resonance enhancements of widths as small as 100 meV.
The resonance enhancements depend on the energies of the
modes, implying that all the collective modes may not be
measured in a single spectrum.

In Fig. 1(a) the sharp peak at the highest energy
(0.92 meV) is the charge-density gap mode of the n ! 1!3
state at long wavelengths [12–16]. The two bands at
the lower energy are assigned to peaks in the DOS of
charge-density excitations. Specific assignments of these
bands are readily made by comparing the experimental
results with the calculated dispersions shown in Fig. 1(b).
The solid curve was scaled down, from the ideal 2D result
[10], by a constant to facilitate the assignment of the
observed modes. Solid squares indicate results of calcula-
tions that incorporate the effects of finite thickness of the
2D electron system [24]. The band at the lowest energy
(0.46 meV) is assigned to the critical point at the deep
magnetoron minimum in the dispersion of gap excitations.
The band at 0.68 meV is interpreted as a peak in the DOS
of modes with large wave vectors because for ql0 * 2 the
dispersion is flat. These results suggest the existence of
just one deep magnetoroton minimum at n ! 1!3.
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FIG. 2. (a) Resonant inelastic light scattering spectra at n !
2!5. Dotted lines denote collective excitations in the FQH state.
(b) The dispersion of collective excitations at n ! 2!5. The
solid curve was scaled down from the ideal 2D result [10] by
a constant, as in Fig. 1(b). Solid squares indicate results of
calculations that incorporate the effect of finite thickness [24].
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Splitting of Long-Wavelength Modes of the Fractional Quantum Hall Liquid at ! ! 1=3
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Resonant inelastic light scattering experiments at ! ! 1=3 reveal a novel splitting of the long-
wavelength modes in the low energy spectrum of quasiparticle excitations in the charge degree of
freedom. We find a single peak at small wave vectors that splits into two distinct modes at larger wave
vectors. The evidence of well-defined dispersive behavior at small wave vectors indicates a coherence of
the quantum fluid in the micron length scale. We evaluate interpretations of long-wavelength modes of the
electron liquid.

DOI: 10.1103/PhysRevLett.95.066803 PACS numbers: 73.20.Mf, 73.43.Lp

The key properties of the two-dimensional (2D) electron
liquid phases in the fractional quantum Hall (FQH) regime
are embodied in the lowest energy neutral excitations in the
quasiparticle charge degree of freedom. These dispersive
collective excitations !"q# are built as a superposition of
quasiparticle-quasihole dipole pairs separated by a dis-
tance x ! ql20 [1–5], where q is the wave vector and l0 !
"@c=eB#1=2 is the magnetic length for a perpendicular
magnetic field B. Although the existence of dispersive
modes in FQH systems is assumed in theories that repre-
sent FQH states as quantum fluids, the modes have been
accessible experimentally only at special points in the
dispersion. At the best understood FQH state at Landau
level filling factor ! ! 1=3, the mode energies have been
observed in the long-wavelength limit by inelastic light
scattering [6–8], at the magnetoroton minimum at ql0 $ 1
by ballistic phonon studies [9] and light scattering [7,8],
and in the large wave vector limit by activated magneto-
transport [10–13] and light scattering [8].

The long-wavelength excitations of FQH liquids are of
major interest. Such modes manifest the macroscopic
length scale of the electron liquid because the existence
of a well-defined dispersion, which requires the wave
vector to be a good quantum number, is directly related
to the extent to which the system can be considered trans-
lationally invariant. Studies that map the dispersion in the
long-wavelength limit would shed light on the interplay
between delocalized states that extend over macroscopic
lengths and states that are localized, which is of funda-
mental importance in the understanding of FQH systems.

Probing the long-wavelength dispersion may also clarify
an unresolved issue in the excitation spectrum charge
excitations at ! ! 1=3. It has been postulated that the
lowest energy excitation at long wavelengths could result
from a quadrupolelike excitation built from two
quasiparticle-quasihole pairs, called a two-roton bound
state [5,14,15]. Recent evaluations [16,17] have explored
the low-lying charge excitations at q ! 0 by computing

the energy of a pair of bound rotons with opposite wave
vector and found its energy to be below that of the q ! 0
mode constructed from single quasiparticle-quasihole
pairs. Because a quadrupolelike excitation is predicted to
have a qualitatively different dispersion, experimental de-
terminations of the long-wavelength dispersion provide a
key probe of the character of the excitations.

We report here the first observation of dispersion in the
long-wavelength modes of FQH liquids. By varying the
wave vector k transferred to the 2D system in resonant
inelastic light scattering experiments, we are able, for the
first time, to probe the dispersive behavior of the lower
energy charge excitations at ! ! 1=3 in the wave vector
range kl0 & 0:15. In the spectra, we find a mode at the
lowest k that splits into two distinct modes at kl0 $ 0:1.
The appearance of two distinct branches in the mode
dispersion reveals the complex nature of the excitation
spectrum at small wave vectors, and is the first direct
evidence of the existence of two different FQH excitations
at long wavelengths.

The evidence of dispersive long-wavelength excitations
provides a unique measure of the macroscopic length scale
of the quantum liquid. From the changes in the modes for
small changes in the wave vector, we are able to infer that
coherence in the quantum fluid occurs in large lakes with
macroscopic characteristic lengths that are in the range of
100l0 and are in the micron length scale. It is remarkable
that behaviors linked to translational invariance occur on
this large length scale given that residual disorder must
exist in the FQH state.

The observed weak dispersion at long wavelengths of-
fers unique experimental insights into the properties of the
FQH liquid and is consistent with predictions [3–
5,15,17,18]. Our results indicate that the long-wavelength
modes tend to converge as k ! 0, suggesting the modes
may have some mixed character at small wave vectors [14].
At the largest wave vectors, the higher energy excitation is
damped, possibly because of interactions with a two-roton
continuum [15,17].
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We present results from two 2D electron systems formed
in asymmetrically doped GaAs single quantum wells. The
2D electron system in sample A (B) is formed in a w !
250 "330# !A wide well and has a density of 9:1 "5:5# $
1010 cm%2 with a mobility of 3:6 "7:2# $ 106 cm2=Vs at
3.8 (0.33) K. Finite well widths weaken interactions in the
2D system. In the simplest approximation, this is related to
the ratio w=l0. For samples A and B at ! ! 1=3, these
ratios differ by approximately 3%. Samples are mounted
on the cold finger of a dilution refrigerator with a base
temperature of 45 mK, which is inserted into the cold bore
of a 17 T superconducting magnet. The normal to the
sample surface is at an angle " from the total applied
magnetic field BT , making B ! BT cos".

Light scattering measurements are performed through
windows for direct optical access, with the laser power
density kept below 10%4 W=cm2. The energy of the inci-
dent photons !L is in resonance with the excitonic optical
transitions of the 2D electron system [19,20]. Spectra are
obtained in a backscattering geometry, illustrated in the
inset of Fig. 1(a). The incident and scattered photons make
an angle "with the normal to the sample surface. The wave
vector transferred from the photons to the 2D system is k !
kL % kS ! "2!L=c# sin", where kL"S# is the in-plane com-
ponent of the wave vector of the incident (scattered) pho-
ton. This allows tuning of the wave vector transferred to the
2D system by varying the angle of the sample. For a given
" the value of BT is tuned such that B corresponds to ! !
1=3. Sufficient signal can be detected for "< 65& so that
k & 1:5$ 105 cm%1. In our samples at ! ! 1=3, this cor-
responds to kl0 & 0:15. The uncertainty in the wave vector
of the excitations is primarily set by the finite solid angle of

collection (' 7& from the vertical) and is less than
'0:01=l0. We therefore present results from spectra spaced
by (0:02=l0 up to the largest accessible k.

Figure 1(a) shows light scattering spectra from the long-
wavelength charge density excitation at ! ! 1=3 for vari-
ous values of " in sample A. The marked angular depen-
dencies reveal that the wave vector of these excitations is
equal to the wave vector transferred by the photons to the
2D system (q ! k). We see that the peak in the spectrum
shifts to higher energy for small changes in wave vector. At
the largest wave vector accessible at 1=3 in this system, a
remarkable splitting is observed. The two distinct modes
are sharp (FWHM< 0:1 meV) and are well separated by
0.1 meV. Similar behavior is also observed in sample B,
although, as seen in Fig. 1(b), the energy scale and the shift
in the position of the peak are smaller. Because smaller
values of B are required to access ! ! 1=3 in sample B, we
are able to probe the excitations at substantially larger kl0.
At the largest wave vector kl0 ! 0:135, we see that the
modes are considerably weaker and broader.

The spectra in Fig. 1 offer the first direct evidence for the
existence of two distinct FQH modes in the long-
wavelength limit at ! ! 1=3. A similar k-dependent split-
ting into two branches is not seen in other excitations. For
example, the long-wavelength spin wave [8] remains un-
changed throughout the accessible wave vector range re-
ported here.

The dispersion of the FQH excitations provides a mea-
sure for the length scale of the coherence in the quantum
fluid. For the measurement of a well-defined wave vector
dispersion the change in light scattering wave vector #k
has to be larger than the wave vector spacing between
modes 2$=L, where L is a characteristic length in the
fluid. The angular dependence reveals changes in the
modes for #kl0 ( 0:02. We may define the lower bound
on the macroscopic extent of the incompressible quantum
fluid as L * 2$=#k( 2 %m. It is interesting to note that

FIG. 1. Inelastic light scattering spectra of low-lying long-
wavelength charge modes at ! ! 1=3 at various angles " in
(a) sample A and (b) sample B. The spectra are also labeled by
the equivalent wave vector k ! "2!L=c# sin" in units of 1=l0.
The gray arrows highlight the splitting of the single peak at small
wave vectors into two peaks at larger wave vectors. The light
gray lines show the background. The upper inset in panel (a)
shows the inelastic light scattering geometry.

FIG. 2. Spectra from Figs. 1(a) and 1(b) with backgrounds
subtracted. The gray lines show fits with two Lorentzian line
shapes.
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• Surprisingly, the energies of CF excitons across multiple CF Landau levels merge at  at . 

• Theoretical splitting of 0.013(5)  at  is in good agreement with experiment (~0.012(3)).  

• The splitting seen in experiments thus represents a CF exciton across two CF Landau levels.
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Collective excitations of composite fermions
across multiple ! levels
Dwipesh Majumder1, Sudhansu S. Mandal1 and Jainendra K. Jain2*
The fractional quantum Hall state1 is a quintessential system
for the study of collective quantum behaviour. In such
a system, the collective behaviour results in the creation
of so-called composite fermions, quasi-particles formed by
electrons attached to magnetic flux quanta. Recently, a
new collective mode was unexpectedly observed in Raman
scattering experiments2 on such a system as it was found to
split off from the familiar ‘fundamental’ long-wavelengthmode
on increase of the wave vector. Here, we present results from
extensive theoretical calculations that make a compelling case
that this mode corresponds to an excitation of a composite
fermion across two ! levels—effective kinetic energy levels
resembling Landau levels for such particles. In addition to
explaining why this excitation merges with the fundamental
mode in the long-wavelength limit, our theory also provides
a good quantitative account of the amount of splitting, and
makes several experimentally verifiable predictions.

Unlike the well-known quantum phenomena of superfluidity
and superconductivity, the fractional quantum Hall effect1 does
not entail any Bose–Einstein condensation but occurs as a
result of the formation of topological electron–vortex bound
states called composite fermions3. Transport4, light scattering5,6
and phonon scattering7,8 have been extensively used during the
past quarter of a century to probe its numerous excitations.
Of particular significance is the neutral collective mode, which
was first studied theoretically at Landau-level filling ν = 1/3
in a single-mode approximation9, wherein, following Feynman’s
theory of the phonon–roton mode of helium superfluid, the
excitation is modelled as a density wave. The neutral collective
mode was detected by Raman scattering5, with the observations
generally consistent with the predictions of the single-mode
approximation in the long-wavelength limit. More recently,
however, Hirjibehedin et al.2 have discovered that this mode is not
a single mode, as believed earlier, but splits into two as the wave
vector is increased. By definition, the single-mode approximation
cannot accommodate a doublet. A hydrodynamic approach has
been proposed10 to account for the experimental observation,
but does not take into account the microscopic physics of the
fractional quantum Hall effect (FQHE), does not naturally explain
the merging of the twomodes in the long-wavelength limit and also
greatly underestimates the splitting.

We show here that this new mode finds a natural explanation
within the composite-fermion theory3. Composite fermions are
bound states of electrons and an even number (2p) of quantized
vortices. Because of the Berry phases produced by the bound
vortices, composite fermions effectively experience a much reduced
magnetic field B∗ = B− 2pρφ0 (B is the external magnetic field,
ρ is the two-dimensional density and φ0 = hc/e is called the
flux quantum). Composite fermions form their own Landau-like

1Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India, 2104 Davey Laboratory, Physics
Department, Pennsylvania State University, University Park, Pennsylvania 16802, USA. *e-mail: jain@phys.psu.edu.

kinetic energy levels in this reduced magnetic field, called $
levels, and their filling factor ν∗ is related to the electron filling
factor ν through the relation ν = ν∗/(2pν∗ + 1). In particular, at
ν = n/(2pn+ 1), the ground state consists of n filled $ levels. In
the composite-fermion theory, the lowest-energy neutral excitation
is a particle–hole pair, or an exciton, of composite fermions,
wherein a single composite fermion from the topmost occupied
$ level is excited into the lowest unoccupied $ level (Fig. 1b
shows the fundamental composite-fermion exciton at ν = 2/5).
The validity of this description has been confirmed for fractions of
the form ν = n/(2pn+ 1) by comparison to exact diagonalization
results as well as to experiment11,12. This physical explanation for
the neutral collective excitations is distinct from the single-mode
approximation, and, in particular, suggests the possibility of extra
collective modes, in which a composite fermion is excited across
two ormore$ levels, as shown schematically in Fig. 1c, in complete
analogy to the collective modes of an integral quantum Hall
state13. However, it is far from obvious that the composite-fermion
collective modes across different$ levels should merge in the long-
wavelength limit. In fact, a model that takes composite fermions as
non-interacting produces collective modes spaced by the effective
cyclotron energy in the long-wavelength limit, as also found for
the dispersions obtained in the composite-fermion Chern–Simons
approach14,15; if correct, this would make such physics irrelevant to
the new collective mode discovered in ref. 2. For a more definitive
test, however, the composite-fermion exciton-mode spectrummust
be evaluated in a microscopic approach that includes effects of
inter-composite-fermion interactions.

Exact diagonalization studies of the FQHE state do not by
themselves provide an understanding of the underlying physics,
and are not useful in the present context, because, as seen below,
systems as large as 200 particles are required for investigating
the experimentally relevant wave vectors; the Fock space increases
exponentially with the number of particles, and at present exact
diagonalization is possible only for 10–12 particles for the filling
factors of interest here. Our quantitative investigations below
exploit accurate trial wavefunctions for composite fermions3. The
standard spherical geometry is used in our calculations, which
considers electrons moving on the surface of a sphere, subjected
to a radial magnetic field. The magnetic field can be thought
to emanate from a ‘magnetic monopole’ of strength Q at the
centre, which produces a total magnetic flux of 2Qφ0 through
the surface of the sphere. This maps into a system of composite
fermions at an effective flux Q∗ = Q − N + 1, with Q chosen
so that the state at Q∗ is an integral quantum Hall state at
filling ν∗ = n. The wavefunction %CF-g for the FQHE ground
state at ν = n/(2n+1) is obtained by composite-fermionizing the
ν∗ = n integral quantum Hall state &g. To model neutral collective
excitations, we first construct wavefunctions of the excitons of the
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Figure 1 | Schematic diagram of composite-fermion excitons. Each composite fermion is shown as an electron carrying vortices represented by arrows. a,
Representation of the ground state at ν = 2/5 as two filled " levels. b,c, 1→ 2 (b) and 0→ 2 (c) composite-fermion excitons.
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Figure 2 |Dispersions of several composite-fermion excitons and their spectral weights. a, The three lowest composite-fermion exciton modes at
ν = 1/3, obtained from 0→ 1, 0→ 2 and 0→ 3 excitons. The error bar at the end of each curve represents the typical statistical error in the energy
determined by the Monte Carlo method. The energies are quoted in units of e2/ε$, where ε is the dielectric constant of the background semiconductor and
$=√

h̄c/eB is the magnetic length. b, The three lowest composite-fermion exciton modes at ν = 2/5, obtained from 1→ 2, 0→ 2 and 1→ 3 excitons. c,
Spectral weights for the three modes at ν = 1/3 for N= 100. The curves from top to bottom correspond to the three modes shown in a respectively from
bottom to top. d, The spectral weight for the lowest-energy composite-fermion exciton at ν = 1/3 at small q$ for N= 50 and N= 100. All results in this
figure are for the Coulomb eigenstates χCF-ex

λ .

integral quantum Hall state, denoted by {'ex
λ,L}, where L is the total

orbital angular momentum of the exciton and λ labels different
excitons of the type shown in Fig. 1. We composite-fermionize
this basis to obtain {(CF-ex

λ,L }, which gives a set of basis functions
for composite-fermion excitons. We orthonormalize this basis and
diagonalize the Coulomb Hamiltonian to obtain the energies of
the physical excitations, and also their wavefunctions {χCF-ex

λ,L }. The
scalar products of various basis functions and the Hamiltonian
matrix elements are evaluated by the Metropolis Monte Carlo
method. Blocks of different L are not coupled by the interaction,
so can be diagonalized separately. More details can be found in
refs 16, 17 and Supplementary Information.

Even though our immediate interest is in understanding the
splitting of the collective mode at ν = 1/3, we consider, for
completeness, the three lowest collective modes at two filling
factors: 0 → 1, 0 → 2 and 0 → 3 modes at ν = 1/3, and 1 → 2,
1 → 3 and 0 → 2 modes at ν = 2/5. We have studied systems
with 50, 100 and 200 particles at both ν = 1/3 and ν = 2/5. The
results shown in Fig. 2a, b refer to the 200-particle system, which we
believe accurately represents the thermodynamic limit. The exciton
dispersions are quoted as a function of the wave vector q, defined
as q= L/R, where R=√

Q is the radius of the sphere in the unit of
magnetic length $=√

!c/eB. The dispersion curves are obtained by
averaging over 1.2×107 Monte Carlo iterations.
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Figure 2 |Dispersions of several composite-fermion excitons and their spectral weights. a, The three lowest composite-fermion exciton modes at
ν = 1/3, obtained from 0→ 1, 0→ 2 and 0→ 3 excitons. The error bar at the end of each curve represents the typical statistical error in the energy
determined by the Monte Carlo method. The energies are quoted in units of e2/ε$, where ε is the dielectric constant of the background semiconductor and
$=√

h̄c/eB is the magnetic length. b, The three lowest composite-fermion exciton modes at ν = 2/5, obtained from 1→ 2, 0→ 2 and 1→ 3 excitons. c,
Spectral weights for the three modes at ν = 1/3 for N= 100. The curves from top to bottom correspond to the three modes shown in a respectively from
bottom to top. d, The spectral weight for the lowest-energy composite-fermion exciton at ν = 1/3 at small q$ for N= 50 and N= 100. All results in this
figure are for the Coulomb eigenstates χCF-ex

λ .

integral quantum Hall state, denoted by {'ex
λ,L}, where L is the total

orbital angular momentum of the exciton and λ labels different
excitons of the type shown in Fig. 1. We composite-fermionize
this basis to obtain {(CF-ex

λ,L }, which gives a set of basis functions
for composite-fermion excitons. We orthonormalize this basis and
diagonalize the Coulomb Hamiltonian to obtain the energies of
the physical excitations, and also their wavefunctions {χCF-ex

λ,L }. The
scalar products of various basis functions and the Hamiltonian
matrix elements are evaluated by the Metropolis Monte Carlo
method. Blocks of different L are not coupled by the interaction,
so can be diagonalized separately. More details can be found in
refs 16, 17 and Supplementary Information.

Even though our immediate interest is in understanding the
splitting of the collective mode at ν = 1/3, we consider, for
completeness, the three lowest collective modes at two filling
factors: 0 → 1, 0 → 2 and 0 → 3 modes at ν = 1/3, and 1 → 2,
1 → 3 and 0 → 2 modes at ν = 2/5. We have studied systems
with 50, 100 and 200 particles at both ν = 1/3 and ν = 2/5. The
results shown in Fig. 2a, b refer to the 200-particle system, which we
believe accurately represents the thermodynamic limit. The exciton
dispersions are quoted as a function of the wave vector q, defined
as q= L/R, where R=√

Q is the radius of the sphere in the unit of
magnetic length $=√

!c/eB. The dispersion curves are obtained by
averaging over 1.2×107 Monte Carlo iterations.
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Even though composite fermions in the fractional quantum Hall liquid are well established, it is not yet

known up to what energies they remain intact. We probe the high-energy spectrum of the 1=3 liquid

directly by resonant inelastic light scattering, and report the observation of a large number of new

collective modes. Supported by our theoretical calculations, we associate these with transitions across two

or more composite fermions levels. The formation of quasiparticle levels up to high energies is direct

evidence for the robustness of topological order in the fractional quantum Hall effect.
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Collective states of matter have proved enormously
important both because of the conceptual structures they
reveal and the role they play in technological innovation.
The fractional quantum Hall (FQH) liquid, which emerges
as a result of interactions between electrons when the
dimensionality is reduced to two and the Hilbert space is
further restricted by application of an intense magnetic
field [1], represents a cooperative behavior that does not
subscribe to concepts such as Bose-Einstein condensation,
diagonal or off-diagonal long range order, and Landau
order parameter. It is the realization of a topological quan-
tum state of matter, the understanding of which has influ-
enced development in a wide variety of fields, such as
topological insulators, cold atoms, graphene, generalized
particle statistics, quantum cryptography, and more [2–7].

Neutral excitations provide a window into the physics of
the FQH liquid. Early theoretical treatments of the lowest
neutral collective mode of the FQH state at ! ¼ 1=3 em-
ployed a single mode approximation [8], as well as exact
diagonalization studies on small systems [9], and showed a
minimum in the dispersion, which, following the terminol-
ogy used in superfluid helium, is called a ‘‘magnetoroton.’’
Subsequently, the collective modes at this and other frac-
tions were understood in terms of composite fermions
(CFs), quasiparticles that result from a binding of electrons
and an even number of quantized vortices [10]. Despite
their complex collective character, CFs act as almost free
particles insofar as the low energy behavior is concerned
[1]. They experience an effective magnetic field and form
their own Landau-like levels, which are called ‘‘! levels.’’
(The CF ! levels reside within the lowest electronic
Landau level.) The neutral excitations are described as

inter-!-level exciton collective modes of CFs [11–14], in
close analogy to the electronic collective modes of the
integral Hall states.
We report the excitation spectrum of the FQH fluid at

! ¼ 1=3 in an unexplored energy range. Our main finding
is the existence of several well-defined collective modes at
energies substantially exceeding those of the highest be-
fore reported spin-conserving (SC) and spin-flip (SF)
modes [15–17]. Further, we provide compelling evidence,
supported by a detailed comparison between theory and
experiment, that these neutral modes represent a new fam-
ily of excitations involving CF transitions across several !
levels. The direct experimental observation of the integrity
of ! levels at energies far above the Fermi energy demon-
strates that CFs are more robust than previously thought,
bolstering the expectation that the quasiparticles of other
topological states of CFs, such as the non-Abelian quasi-
particles of the Pfaffian state at 5=2 [3,18], will also have
comparably robust character.
The collective excitations of the FQH systems are mea-

sured by ILS. The experiments are performed in a back-
scattering geometry with windows for direct optical access
to the sample, as shown in Fig. 1(a). Electron system
studied here is formed in an asymmetrically doped,
33 nm wide GaAs single quantum well. The electron
density is n ¼ 5:6# 1010 cm!2, with mobility, " ¼ 7#
106 cm2 V s at T ¼ 300 mK. Samples are mounted on the
cold finger of a dilution refrigerator with a base tempera-
ture of 40 mK that is inserted into the cold bore of a 17 T
superconducting magnet. The energy of the incident pho-
tons,!L, is continuously tunable to be close to singlet (S1)
and triplet (TB) fundamental optical transitions of the
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GaAs, seen in emission spectra shown in Fig. 1(b) [15].
The power density is kept below 10!4 Wcm!2. Scattered
light is dispersed by a Spex 1404 double CzernyTurner
spectrometer with holographic master gratings. Spectra are

acquired by optical multichannel detection. The combined
resolution of the system is about 20 !eV. Spectra can be
taken with the linear polarization of!L parallel (polarized)
or perpendicular (depolarized) to the detected scattered
photon polarization.
The wave vector transferred from the photons to the 2D

system is q ¼ ð2!L=cÞ sin", much smaller than 1=l, where

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi@c=eBp

is magnetic length. However, weak short-
range disorder induces a breakdown of wave vector con-
servation [15,17,19,20], which allows ILS to detect the
critical points in the exciton dispersion, such as the rotons,
because of van Hove singularities in the density of states
at these energies.
The intensity of the ILS at # ¼ 1=3 is displayed in Fig. 2

as a function of the energy transfer ! ¼ !L !!S. Each
peak indicates the presence of a collective mode. The
collective mode energies are marked by vertical lines
[21]. The previously observed modes lie at energies below
%1 meV, as seen in Fig. 2(a). The striking feature of the
spectra shown in Figs. 2(b) and 2(c) is the existence of
several new modes up to 1.6 meV, the largest energy
exchange accessed in our experiments.
It is natural to interpret these new modes in terms of

excitations of CFs across K levels, referred to below as
‘‘level-K excitons.’’ Previous experiments at # ¼ 1=3 had

FIG. 2 (color online). ILS spectra of excitations at # ¼ 1=3 as a function of the energy shift (with total magnetic field BT ¼ 8:0 T,
and a tilt of 30&). The energy is shown in units of e2=$l on the top scale, where l is magnetic length and $, the dielectric constant of
GaAs. The upper panels show peaks of several modes for certain selected incident photon energies. The lower panel contains a color
plot of the intensities of both (a) ‘‘low energy’’ and (b),(c) the novel high-energy modes. The vertical lines mark the positions of the
collective modes. The symbols, explained in the text, identify the modes with excitations of CFs across several ! levels, both with
and without spin reversal.

FIG. 1 (color online). (a) Schematic description of the light
scattering setup. !L and !S are the frequencies of the incident
laser photons (L) and of the scattered photons (S). (b) Optical
emission at # ¼ 1=3 (BT ¼ 8:0 T, 70 mK). The two peaks,
labeled S1 and TB, are two of the fundamental optical excitons
of the GaAs quantum well; tuning the incident photon energy
close to 1 of these peaks produces a resonance enhancement of
ILS intensities.
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reported only level-1 SC excitons and level-0 SF excitons
[15,17,22,23]. Level-2 and level-3 CF excitons were re-
cently investigated theoretically [24] in the context of the
splitting of the 1=3 collective mode at small but nonzero
wave vectors [23]. Because the modes may also involve
spin reversal, we adopt the notation in which we denote the
level-K spin-conserving modes by !!

cK and the level-K
spin-flip modes by !!

sK. The superscript indicates the
position of the mode: we have ! ¼ 0 for the zero wave
vector mode, ! ¼ 1 for the large wave vector limit, and
! ¼ R for a roton mode. Identifications of the various
modes shown on Fig. 2 are based on the analysis below.

The dispersions of the SC and SF excitons are obtained
by the method of CF diagonalization (without Landau level
mixing and disorder) [25]. For a more accurate compari-
son, we have included here two realistic effects: The finite
width modification of the interaction is incorporated via a
self-consistent local density approximation. We also allow
" level mixing by considering the five lowest energy CF
excitons. A combination of these two effects results in a
20% reduction of the energy of the level-2 and level-3
excitons, and a smaller (" 10%) reduction in the energy
of the level-1 exciton. Figure 3 shows the full theoretical
dispersions of the CF exciton branches for SC and SF

modes. To avoid clutter, only the lowest three branches
are shown. The calculations are performed for 200 (100)
particles for SC (SF) modes and reflect the thermodynamic
behavior. The three dispersion curves indicated in Fig. 3(b)
are assigned as level-0, level-1, and level-2 for SF modes
and level-1, level-2, and level-3 for SC modes, in order of
increasing energy. The residual interaction between CFs in
principle mixes the different ‘‘unperturbed’’ level-K exci-
tations; however, the modes do not mix significantly at
large ql, which allows us to continue to use the level-K
nomenclature even for mixed modes. Figure 4 shows a
comparison of the CF excitons with exact diagonalization
studies on a finite system.
Level-1 SC modes and level-0 SF modes have been

identified in previous experiments [15,17,23]. Of interest
here are the higher lying modes. We proceed by sorting the
experimental values of the new modes in ascending order
and match them up with theoretical values. The resulting
comparison between theory and experiment is shown in
Fig. 5. The theoretical results for the energies of level-1
excitons are in excellent agreement with the experimental
results. The only exception is the long wavelength collec-
tive mode !0

c1, for which the discrepancy is closer to 35%,
but a "20% agreement is achieved when screening of the
single exciton by two-roton excitations is taken into ac-
count [26]. This correction, not included in the calculation
shown in Fig. 3, is incorporated in Fig. 5.
It is significant that mode energies predicted by theory

agree to within 0.2–0.3 meV with measured energies,

FIG. 3 (color online). Schematic diagram of CF excitons ac-
companied by theoretical calculations of their dispersions.
(a) The right panel shows pictorially the SC excitations j0; "i !
jK; "i across K " levels. The left panel shows the spin-flip modes
j0; "i ! jK; #i (b) Calculated dispersions of CF excitons for a
35 nm wide GaAs quantum well with an electron density of
5:0# 1010 cm$2. The right (left) panel shows the dispersions for
SC (SF) modes. The error bar at the end of each curve represents
the typical statistical uncertainty in the energy determined by
Monte Carlo method. Critical points in the dispersion are
labeled.

FIG. 4 (color online). Comparison of CF excitons with exact
diagonalization results (in spherical geometry) for eight particles
at " ¼ 1=3. The (red) stars show the CF exciton dispersions for
the lowest three SC branches for this system as a function of the
total orbital angular momentum L. The exact spectra are taken
from Ref. [12]. The area of each black rectangle is proportional
to the normalized spectral weight under the state; larger spectral
weight implies greater intensity in ILS. The level-1 and level-2
CF excitons closely trace lines of high spectral weight; it is
possible that still higher modes will become identifiable in the
exact spectra for larger systems. The other states in the exact
spectrum are interpreted as made up of multiple excitons, which
are expected to couple less strongly to light.
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the lowest three SC branches for this system as a function of the
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• Both theory and experiments have lots of modes. There is an 
approximate correspondence between their energies.

which translates into a better than 20% agreement. It
should be stressed that a similar level of deviation between
the theoretical and experimental values of the excitation
energies has been found in the past for other excitations,
and attributed to disorder. We judge the overall comparison
between theory and experiment to be good, and take it as a
strong support of the identification of the high-energy
collective modes ranging from about 1.0 to 1.6 meV in
terms of transitions of CFs into higher levels.

We note that due to the presence of a large number of
modes, sometimes two or more modes happen to lie at very
nearby energies, and thus may not be resolved in our
experiments. For example, for SC modes, the energy of
the level-3 roton overlaps with the small q (ql! 0:6)
critical point of the level-2 exciton [see Fig. 3(b)]. As
another example, the small q (ql! 0:8) critical point of
the level-3 exciton overlaps in energy with the large wave
vector limit of the level-3 exciton. When encountering
such a situation, we have, for simplicity, arbitrarily as-
signed one of the possible labels to the observed mode
(!R

c3 and !1
c3, respectively, for the above two cases).

The assignment remains tentative in such cases, and
more sensitive experiments in the future may reveal further
finer structure.

Our work sets the stage for further investigations in other
FQH states in GaAs, and also in other 2D systems, such as
graphene, where the FQH physics is in its infancy [4,5].
The high-energy excitations should also be accessible to
other experimental methods such as optical absorption [27]
and time domain capacitance spectroscopy [28]; these
probes are likely to provide important further insight into
the physics discussed above.
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• Experiments show spin flip modes below the Zeeman energy at  !ν = 2/5, 3/7, 4/9
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We find unexpected low energy excitations of fully spin-polarized composite-fermion ferromagnets in

the fractional quantum Hall liquid, resulting from a complex interplay between a topological order

manifesting through new energy levels and a magnetic order due to spin polarization. The lowest energy

modes, which involve spin reversal, are remarkable in displaying unconventional negative dispersion at

small momenta followed by a deep roton minimum at larger momenta. This behavior results from a

nontrivial mixing of spin-wave and spin-flip modes creating a spin-flip excitonic state of composite-

fermion particle-hole pairs. The striking properties of spin-flip excitons imply highly tunable mode

couplings that enable fine control of topological states of itinerant two-dimensional ferromagnets.

DOI: 10.1103/PhysRevLett.107.066804 PACS numbers: 73.43.!f, 78.67.De

Strong repulsive interaction between charged particles
confined in two dimensions and subjected to a perpendicu-
lar magnetic field leads to the striking correlation phenome-
non of the fractional quantum Hall effect (FQHE) [1].
FQHE is explained by the emergence of composite fermi-
ons (CFs), bound states of electrons, and an even number 2n
of quantized vortices [2]. Composite fermions have a topo-
logical character because of the attached vortices, each of
which produces a Berry phase of 2! for a closed loop
around it. The Berry phases partly cancel the effect of the
perpendicular external field B? to produce an effective
magnetic field Beff ¼ B? ! 2n"#0, where " is the particle
density and #0 ¼ hc=e. As a result, composite fermions
form Landau-like levels, called ‘‘! levels’’ (!L’s), in the
reduced effective magnetic field. The splitting of the lowest
Landau-level (LL) of electrons into !L’s is thus a direct
manifestation of the topological order of the FQHE. The
main sequences of FQHE states at LL fillings $ ¼
p=ð2np$ 1Þ (the integer p is the number of filled !L’s)
are successfully described as integer quantum Hall effect of
noninteracting CFs. We show below that the existence of
!L’s has nontrivial consequences for the physics of mag-
netism arising from the CF spin degree of freedom.

The FQHE states with $< 1 of the lowest LL are fully
spin-polarized ferromagnets for a broad range of Zeeman
energy and electron density. The basic physics of 2D
ferromagnets entails a low energy spin wave (SW), for
which only the orientation of spin changes [3]. In the small
wave vector limit (q ! 0), Larmor’s theorem stipulates
that the SW energy is precisely equal to the bare Zeeman
energy EZ ¼ g%BBtot, where g is the Landé factor, %B is

the Bohr magneton, and Btot the total applied magnetic
field. For a conventional ferromagnet, such as the one at
$ ¼ 1 [3], we expect that the SW has positive dispersion
with energy that increases monotonically with wave vector
reaching a large wave vector asymptotic limit of E&

Z, the
sum of EZ and the Coulomb energy EC required to create a
particle-hole pair with reversed spin.
Here we report that CF ferromagnets exhibit a funda-

mentally different behavior. Resonant inelastic light scat-
tering (ILS) measurements reveal the presence of
excitations below the bare Zeeman energy. Quantitative
interpretations based on CF theory reveal that the new
modes are what we call spin-flip excitons (SFEs), namely,
excitations in which a CF quasiparticle transitions to a spin-
reversed level with a lower!L quantum number. These are
energetically more favorable than the ordinary ferromag-
netic spin-wave excitations (which conserve the !L index)
because of the associated lowering of the CF cyclotron
energy. The SFEs produce one or more deep roton minima
at finite wave vectors, and complex mode mixing creates a
negative dispersion of the SW at small wave vectors. This
behavior is fundamentally different from the dispersion of
the conventional SW of electron ferromagnets.
The physics of spin conserving neutral excitations has

been studied extensively in the past, resulting in the ob-
servation of dispersions of the neutral excitations of several
FQHE states exhibiting roton minima [4–7]. These obser-
vations are well explained in terms of spin conserving CF
excitations across a single !L [8–10]. Excitations across
multiple!L’s have recently been observed [11]. Relatively
little attention had been paid so far to the spin-reversed
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excitations [12–14]. Many experimental studies have in-
vestigated the spin polarization of various FQHE ground
state as well as spin phase transitions as a function of the
Zeeman energy [15–18], analyzing their findings in terms
of the CF!L transitions [19]. While the present work deals
with a different physics, namely, the spin-reversed excita-
tions of the fully spin-polarized FQHE states, the appear-
ance of roton minima below the bare Zeeman energy can
be considered as a precursor of an instability of the ferro-
magnetic state at sufficiently low Zeeman energies.

The experiments were performed on an ultrahigh-quality
two-dimensional electron system confined in a single
33 nm wide asymmetric GaAs quantum well. Free electron
density and mobility are n ¼ 5:35" 1010 cm2 and ! ¼
7:2" 106 cm2=Vs, respectively, at T ¼ 300 mK after
illumination. ILS measurements were performed in a
3He-4He dilution refrigerator at a base temperature of
45mK that is equippedwith a 17 T superconducting magnet
and windows for direct optical access [see Fig. 1(a)]. The
sample was placed with an angle " between sample normal
and external B field as sketched in the inset of Fig. 1(a). The
resonant enhancement of the ILSwas achieved by tuning the
incident photon energies EL ¼ @!L to be close to the fun-
damental optical gap of the GaAs quantum well (QW)
[4,5,20]. For ILS measurement of spin-reversed excitations
the linearly polarized incoming light was cross polarized to
the scattered light [14]. The spectra were acquired with a
double monochromator and recorded with multichannel
optical detection. The backscattering geometry employed
in our experiments enables amomentum transferq0 ¼ kL #
kS ¼ ð2!L=cÞ sin", where kLðSÞ is the in-plane component
of the incident (scattered) photon. For our experiments,
q0l & 0:09 for " ¼ 30' and q0l & 0:135 for " ¼ 50',
where the magnetic length is l ¼ ½eB?=ð@cÞ)1=2.

Figure 1(b) displays a color plot of ILS intensities at # ¼
3=7with " ¼ 50' as a function of incident photon energies.
The intensity of the long wavelength SW mode at EZ ¼
0:2 meV is resonantly enhanced for EL ¼ 1:519 97 meV.
A low energy tail of spin-reversed excitations and the
development of a new mode below EZ [marked with a
gray (red) line] are clearly visible. Similar modes below
EZ are observed at # ¼ 2=5 and 4=9 [Fig. 2(a)] at both " ¼
30' and 50', although they are less pronounced for 30'

(Fig. 4). The tail below EZ becomes more enhanced with
increasing CF filling factor p as clearly visible in Fig. 2(a)
for " ¼ 50'. No sub-Zeeman energy tail is seen at# ¼ 1=3.
The low energy tail indicates the presence of spin-reversed
modes below the Zeeman energy. This is further investi-
gated by empirical fits to the resonant ILS spectra with two
Lorentzians at # ¼ 2=5, three Lorentzians at # ¼ 3=7 and
# ¼ 4=9 (" ¼ 30'), and four Lorentzians at # ¼ 4=9 (" ¼
50'), which reproduce the experimental data very well, as
demonstrated for # ¼ 3=7 (" ¼ 30') in Fig. 2(b). In the
empirical fits one Lorentzian is always centered at the bare
Zeeman energy, one or more Lorentzians is required to
account for new excitations and one additional (dashed
line) is needed to account for ILS intensities below EZ.
The energies at the centers of the Lorenzians determined
from the best fits are given in the last two columns in Table I.
While the empirical fits identify the major components of
the ILS spectra of low-lying reversed-spin excitations, in
the following we show that the observed modes are
explained qualitatively and quantitatively as the spin-flip
excitons of composite fermions. We note that the observa-
tion of a spin-wave mode indicates nonzero spin polariza-
tion. The spin phase diagram of FQHE determined
previously both experimentally and theoretically indicates

FIG. 1 (color online). Inelastic light scattering experiments.
(a) Experimental setup. (b) Color plot of ILS intensities of spin-
reversed excitations at # ¼ 3=7 as function of the exciting
photon energy EL. The tilt angle is " ¼ 50' and Btot ¼ 8 T.
The inset shows spectra of the SW mode at EZ and of sub-EZ

excitations for EL ¼ 1:519 97 eV (indicated as a dashed line).
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high energy tail is observable. (b) Spectra at # ¼ 3=7 for " ¼
30' (black squares). The black (blue) line is a fit with three
individual Lorentzians shown in gray. The peak positions are
marked with vertical lines.
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that our FQH system is in the region with full spin
polarization [15,17,19]. To illustrate the essential physics,
we depict the spin-polarized CF ground state in Fig. 3(c) for
p ¼ 3 (! ¼ 3=7, 3=5), for which the lowest three!L’s 0 " ,
1 " , and 2 " are fully occupied. Various excitations are
possible [12,19]. The excitations that conserve the !L
index (0 "! 0 # , 1 "! 1 # , 2 "! 2 # ) participate in the
formation of the conventional SW excitation. The !L
scheme reveals non-SW excitations, namely, the SFEs that
change the !L index and simultaneously reverse spin. !L
lowering SFEs are 2 "! 0 # , 2 "! 1 # , 1 "! 0 # . Finally,
the excitations that raise the !L index (such as 0 "! 1 # ,
1 "! 2 # , 2 "! 3 # ) will not be considered below, because
they are not relevant for the low energy physics of interest.

This physical understanding suggests that the !L low-
ering SFEs, which are available for p " 2, may have
energy below EZ, and it is tempting to associate them
with the observed sub-Zeeman excitations. While this
physics naturally explains the absence of negative energy
excitations at 1=3, its unambiguous confirmation requires a
quantitative comparison with theory, which in turn neces-
sitates a consideration of the mixing between these exci-
tations due to the residual inter-CF interaction. Such
calculations are possible within the well-developed formal-
ism of the CF theory, which has been found to be quanti-
tatively successful in describing the spin phase diagram of
the FQHE states. We calculate the dispersions of the true
eigenmodes for ! ¼ 2=5, 3=7, and 4=9 by the method of
CF diagonalization, in which the Coulomb interaction is
diagonalized in the space of excitations listed above. We
include the effective renormalization of the interaction due
to finite quantum well width as explained in Refs. [10,11].
Landau-level mixing and residual disorder has been ne-
glected. The dispersions are computed with up to 136
particles by methods described in the literature [12] and
represent the thermodynamic limit. The predicted disper-
sion for the lowest spin-reversed modes for 2=5, 3=7, and
4=9 are plotted in Fig. 3(a). The typical statistical error in
the energy resulting from the Monte Carlo method is given
at the end of each dispersion curve.

A striking and unusual feature is that the SW dispersion
has a negative curvature at small wave vectors. A second
notable aspect is that at 2=5, 3=7, and 4=9 one or more

minima and maxima, called rotons and maxons, appear
below EZ. The lowest spin-reversed branch is a mixture of
the SW and SFE excitations, and changes its dominant
character as a function of the wave vector. As shown in
Fig. 3(b) exemplarily for ! ¼ 3=7, it is predominantly 2 "
! 0 # SFE-like for ql > 0:8, and converges into the SW in
the ql ! 0 limit. At intermediate wave vectors, however, it
is a more complicated admixture of the SWand several SFE
modes. Remarkably, the energies of all individual modes
are positive in this intermediatewave vector range, whereas
the energy of the combined mode is negative. Nonetheless,
the 2 "! 0 # SFE mode captures all the rotons and maxons,
with other SFEs resulting in further lowering of the energy
but without producing new qualitative structures.
The change in the photon wave vector is in general small

compared to 1=l. However, as it is well appreciated, disor-
der allows (discussed below in more detail) coupling of ILS
to the excitations at wave vectors comparable to 1=l. The
coupling is strongest to the SFEs near the critical points in
the dispersion, i.e., the rotons and the maxons, because of a
singularity in the density of states at those energies [6]. The
theoretically predicted energies of the SFE rotons andmax-
ons, obtained without any adjustable parameters, are shown
in Table I. The excellent agreement between the calculated
and themeasured energies gives a quantitative confirmation

TABLE I. Momenta and energies of rotons and maxons modes
from calculation and from Lorentzian fits to the experiment for
both " ¼ 30# and 50#.

! Mode ql
"Etheory

10$3ðe2=#lÞ
"E30#

10$3ðe2=#lÞ
"E50#

10$3ðe2=#lÞ
2=5 Erot 0.373 $1:39 $0:98 $1:49
3=7 Erot 0.638 $7:48 $7:43 $6:20
4=9 E1

rot 0.63 $8:05 $6:20 $7:20
Emax 1.134 $2:96 $2:80 $3:20
E2
rot 1.533 $5:69
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FIG. 3 (color online). Calculated wave vector dispersions.
(a) The lowest spin-reversed excitation at ! ¼ 2=5, 3=7, and
4=9 for electron density n ¼ 5' 1010 cm2 and QW width of
35 nm. Mode coupling is included as described in the text. The
error bar at the end of each curve represents the typical statistical
error in the energy determined from the Monte Carlo method.
(b) Wave vector dispersion at ! ¼ 3=7. The dash-dotted gray
(red) curve is for the lowest SW excitations without coupling to
SFE modes. The dash-dotted black (blue) line is the spin-flip
exciton 2 "! 0 # without coupling to SW modes. The black solid
curve, same as in (a) for 3=7, incorporates mode couplings as
described in the text. An illustration of the SFE is shown. (c) !L
scheme for fully spin-polarized QHE state at p ¼ 3 (! ¼
3=7; 3=5). SW transition from 2 "! 2 # (center panel) and SFE
transition from 2 "! 0 # (right panel) are outlined.
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• The spin wave is renormalized by the spin-flip CF exciton that alters the CF-LL Index. This 
produces sub-Zeeman spin rotons at 2/5, 3/7, ….  

• No sub-Zeeman spin roton is expected at 1/3.



Quantitative comparisons with experiment

that our FQH system is in the region with full spin
polarization [15,17,19]. To illustrate the essential physics,
we depict the spin-polarized CF ground state in Fig. 3(c) for
p ¼ 3 (! ¼ 3=7, 3=5), for which the lowest three!L’s 0 " ,
1 " , and 2 " are fully occupied. Various excitations are
possible [12,19]. The excitations that conserve the !L
index (0 "! 0 # , 1 "! 1 # , 2 "! 2 # ) participate in the
formation of the conventional SW excitation. The !L
scheme reveals non-SW excitations, namely, the SFEs that
change the !L index and simultaneously reverse spin. !L
lowering SFEs are 2 "! 0 # , 2 "! 1 # , 1 "! 0 # . Finally,
the excitations that raise the !L index (such as 0 "! 1 # ,
1 "! 2 # , 2 "! 3 # ) will not be considered below, because
they are not relevant for the low energy physics of interest.

This physical understanding suggests that the !L low-
ering SFEs, which are available for p " 2, may have
energy below EZ, and it is tempting to associate them
with the observed sub-Zeeman excitations. While this
physics naturally explains the absence of negative energy
excitations at 1=3, its unambiguous confirmation requires a
quantitative comparison with theory, which in turn neces-
sitates a consideration of the mixing between these exci-
tations due to the residual inter-CF interaction. Such
calculations are possible within the well-developed formal-
ism of the CF theory, which has been found to be quanti-
tatively successful in describing the spin phase diagram of
the FQHE states. We calculate the dispersions of the true
eigenmodes for ! ¼ 2=5, 3=7, and 4=9 by the method of
CF diagonalization, in which the Coulomb interaction is
diagonalized in the space of excitations listed above. We
include the effective renormalization of the interaction due
to finite quantum well width as explained in Refs. [10,11].
Landau-level mixing and residual disorder has been ne-
glected. The dispersions are computed with up to 136
particles by methods described in the literature [12] and
represent the thermodynamic limit. The predicted disper-
sion for the lowest spin-reversed modes for 2=5, 3=7, and
4=9 are plotted in Fig. 3(a). The typical statistical error in
the energy resulting from the Monte Carlo method is given
at the end of each dispersion curve.

A striking and unusual feature is that the SW dispersion
has a negative curvature at small wave vectors. A second
notable aspect is that at 2=5, 3=7, and 4=9 one or more

minima and maxima, called rotons and maxons, appear
below EZ. The lowest spin-reversed branch is a mixture of
the SW and SFE excitations, and changes its dominant
character as a function of the wave vector. As shown in
Fig. 3(b) exemplarily for ! ¼ 3=7, it is predominantly 2 "
! 0 # SFE-like for ql > 0:8, and converges into the SW in
the ql ! 0 limit. At intermediate wave vectors, however, it
is a more complicated admixture of the SWand several SFE
modes. Remarkably, the energies of all individual modes
are positive in this intermediatewave vector range, whereas
the energy of the combined mode is negative. Nonetheless,
the 2 "! 0 # SFE mode captures all the rotons and maxons,
with other SFEs resulting in further lowering of the energy
but without producing new qualitative structures.
The change in the photon wave vector is in general small

compared to 1=l. However, as it is well appreciated, disor-
der allows (discussed below in more detail) coupling of ILS
to the excitations at wave vectors comparable to 1=l. The
coupling is strongest to the SFEs near the critical points in
the dispersion, i.e., the rotons and the maxons, because of a
singularity in the density of states at those energies [6]. The
theoretically predicted energies of the SFE rotons andmax-
ons, obtained without any adjustable parameters, are shown
in Table I. The excellent agreement between the calculated
and themeasured energies gives a quantitative confirmation

TABLE I. Momenta and energies of rotons and maxons modes
from calculation and from Lorentzian fits to the experiment for
both " ¼ 30# and 50#.

! Mode ql
"Etheory

10$3ðe2=#lÞ
"E30#

10$3ðe2=#lÞ
"E50#

10$3ðe2=#lÞ
2=5 Erot 0.373 $1:39 $0:98 $1:49
3=7 Erot 0.638 $7:48 $7:43 $6:20
4=9 E1

rot 0.63 $8:05 $6:20 $7:20
Emax 1.134 $2:96 $2:80 $3:20
E2
rot 1.533 $5:69
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FIG. 3 (color online). Calculated wave vector dispersions.
(a) The lowest spin-reversed excitation at ! ¼ 2=5, 3=7, and
4=9 for electron density n ¼ 5' 1010 cm2 and QW width of
35 nm. Mode coupling is included as described in the text. The
error bar at the end of each curve represents the typical statistical
error in the energy determined from the Monte Carlo method.
(b) Wave vector dispersion at ! ¼ 3=7. The dash-dotted gray
(red) curve is for the lowest SW excitations without coupling to
SFE modes. The dash-dotted black (blue) line is the spin-flip
exciton 2 "! 0 # without coupling to SW modes. The black solid
curve, same as in (a) for 3=7, incorporates mode couplings as
described in the text. An illustration of the SFE is shown. (c) !L
scheme for fully spin-polarized QHE state at p ¼ 3 (! ¼
3=7; 3=5). SW transition from 2 "! 2 # (center panel) and SFE
transition from 2 "! 0 # (right panel) are outlined.
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of our physical assignment of these modes. For a more
detailed comparison, we model the ILS intensity IðE; q0Þ
by the phenomenological expression [21]

IðE; q0Þ /
Z

fðq; q0Þ!ðE; qÞdq; (1)

where q0 is the photon wave vector transfer, and fðq; q0Þ ¼
ð1=2Þqb=½ðq% q0Þ2 þ q2b' is a Lorenzian that incorporates
the physics of the breakdown of wave vector conservation
with qb setting its scale. The quantity !ðE; qÞ ¼
ð!=2Þ=f½E% EðqÞ'2 þ !2g is the mode response function
with ! being a measure of broadening of the theoretical
dispersion EðqÞ due to experimental resolution as well as
disorder. In this analysis both ! and qb are treated as adjust-
able parameters. The best fits are obtained for ! ¼
8( 104EC and qb ) 0:145l. The results (solid lines) of
our phenomenological model are compared with the experi-
mentally observed spectra (scatter) in Fig. 4 for " ¼ 4=9
(# ¼ 30*; 50*). The excellent agreement provides further
verification of the physics presented above. Figure 3(c) shows
that the observed ILS spectrum at 4=7 closely resembles that
at 4=9, which is nicely consistent with the fact that both states
have p ¼ 4 filled "L’s of composite fermions (albeit with
oppositeBeff). Similar agreements are found between the ILS
spectra at 2=3 and 2=5, and between those at 3=5 and 3=7.
The physics of the spin-reversed excitations is thus governed
by theCF"L numberp and not the electronic filling factor".
A direct comparison between theory and experiment for the
p=ð2p% 1Þ states is not possible due to technical reasons
that render an evaluation of EðqÞ computationally prohibi-
tively expensive.
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• An excellent qualitative and quantitative understanding of the sub-Zeeman spin rotons has been achieved.
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Zeeman mode.  
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are sub-Zeeman modes. 
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Evidence of Landau Levels and Interactions in Low-Lying Excitations
of Composite Fermions at 1=3 ! ! ! 2=5
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Excitation modes in the range 2=5 ! ! ! 1=3 of the fractional quantum Hall regime are observed by
resonant inelastic light scattering. Spectra of spin-reversed excitations suggest a structure of lowest
spin-split Landau levels of composite fermions that is similar to that of electrons. Spin-flip energies
determined from spectra reveal significant composite fermion interactions. The filling factor depen-
dence of mode energies displays an abrupt change in the middle of the range when there is partial
population of a composite fermion level.
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The states of the fractional quantum Hall effect
(FQHE) display remarkable behaviors that arise from
fundamental electron interactions in two dimensions.
Composite fermion (CF) quasiparticles explain the states
with filling factors ! " p=#2np$ 1%, where p is the CF
filling factor [1,2]. In CF’s electrons stay apart by binding
2n (n " 1; 2; . . . ) vortices of the many-body wave func-
tion. The odd-denominator FQHE states have integer p.
Chern-Simons gauge fields account for electron interac-
tions so that CF’s experience effective magnetic fields
B& " B' B1=2n " $B=#2np$ 1%, where B is the per-
pendicular component of the external field [3,4].
Composite fermions have spin-split Landau levels char-
acteristic of charged fermions with spin 1=2, as shown
schematically in the insets to Figs. 2(b) and 3(a) for ! &
2=5 and ! * 1=3. In this simplest of pictures, CF Landau
levels resemble those of electrons. The spacing of the
lowest same spin levels is represented as a cyclotron
frequency [3,5–11]

!c "
eB&

cmCF
; (1)

where mCF is a CF effective mass. !c is understood as the
energy of the large wave vector (q ! 1) inter-Landau
level excitation of CF’s that represents a quasiparticle-
quasihole pair at large separation [3]. In the main se-
quence of the FQHE there are p fully occupied CF
Landau levels. Equation (1) is employed to extract values
of mCF from the field dependence of activated magneto-
transport [6] and from optically detected microwave
absorption [12]. The existence of a ladder of spin-split
Landau levels of CF’s has been deduced from the angular
dependence of magnetotransport at 5=3 > ! > 4=3 [13].

Spin-reversed quasiparticle-quasihole pairs have spin-
flip energies that are strongly affected by residual CF
interactions [14–17]. States such as 2=5, with two CF
Landau levels fully populated, are spin-polarized because
the spin-flip energies at relatively large fields are larger
than the CF cyclotron frequency. Residual interactions

among composite fermions are of great current interest.
While couplings between CF’s are understood as rela-
tively weak, residual interactions are invoked to interpret
FQHE states at filling factors in the range 2=5 > ! > 1=3
with partial population of CF Landau level [18–20].

Resonant inelastic light scattering methods access the
low-lying excitations of electron liquids of the FQHE
[21–23]. Recent light scattering experiments at filling
factors 1=3 and 2=5 have determined the energies of
rotons at q( 1=l0, where l0 " # !hc=eB%1=2 is the magnetic
length, and of large wave vector (q ! 1) excitations of
CF’s [24]. The observed splittings between rotons and
q ! 1 modes are due to exciton-like bindings in neutral
quasiparticle-quasihole pairs [25–27]. These results,
quantitatively explained within CF theory [24,28], sug-
gest that the structure of CF Landau levels and residual
interactions could be explored by light scattering mea-
surements of collective excitations.

We report resonant inelastic light scattering measure-
ments of low-lying excitations of the electron liquids in
the full range of filling factors 2=5 ! ! ! 1=3, where the
main FQHE states are linked to CF’s that bind two
vortices (n " 1). Low-lying excitations are observed at
all the magnetic fields within the range. The experiments
enable the study of quasiparticles in states with partial
population of one CF Landau level (2 ! p ! 1). They
probe the structure of spin-split CF levels and the impact
of residual interactions among quasiparticles.

At filling factors close to 2=5 we observe modes due to
spin-flip (SF) transitions 1 "! 0 # in which there are
simultaneous changes in spin and CF Landau level quan-
tum numbers, as shown in the inset to Fig. 2(b). Such SF
inter-Landau level collective modes of composite fermi-
ons were recently evaluated for the state at ! " 2=5 [10].
Spin-flip excitations observed at filling factors close to
1=3 when the 1 " level begins to populate confirm the
scheme of spin-split Landau levels in the inset to
Fig. 3(a) and yield a spin-flip energy that reveals signifi-
cant interactions between quasiparticles.
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Transition from Free to Interacting Composite Fermions away from ! ! 1=3
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Spin excitations from a partially populated composite fermion level are studied above and below ! !
1=3. In the range 2=7< !< 2=5, the experiments uncover significant departures from the noninteracting
composite fermion picture that demonstrate the increasing impact of interactions as quasiparticle Landau
levels are filled. The observed onset of a transition from free to interacting composite fermions could be
linked to condensation into the higher order states suggested by transport experiments and numerical
evaluations performed in the same filling factor range.
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In the composite fermion (CF) picture of the fractional
quantum Hall effect (FQHE), fundamental interactions are
taken into account at the mean-field level by mapping the
system of strongly interacting electrons in a perpendicular
magnetic field into a system of CFs moving in a reduced
effective magnetic field [1]. The effective magnetic field
experienced by CF quasiparticles is B" ! B# B1=", where
" is an even integer that labels different sequences of
incompressible states and B1=" is the magnetic field cor-
responding to the filling factor ! ! 1

" . In the CF frame-
work, the reduction in magnetic field follows from the
binding of " flux quanta to electrons. The main sequence
of FQHE states is at Landau level filling factor ! !
p=$"p% 1&, where p is the CF filling factor. Each
FQHE sequence is then centered around an even-
denominator fraction ! ! 1=", where the effective field
cancels and a compressible Fermi liquid is thought to form
[2]. Underlying the CF paradigm is the formation of CF
Landau levels with spacing that depends on the effective
field B" as

 !CF !
ejB"j
m"c

; (1)

where m" is an effective CF mass.
In the CF framework, the complex strongly interacting

many-body physics is transformed into the simple picture
of noninteracting CFs at filling factors p. The sequence of
lowest spin-split CF Landau levels is shown in Fig. 1 for
quasiparticles with " ! 2 (or 2CFs) and " ! 4 (or 4CFs).
The issue of the impact of residual CF interactions is of
particular relevance to states that have 1< p< 2 in which
there is partial population p" ! p# 1 of an excited
Landau level (see Fig. 1). Residual CF interactions in the
partially populated excited CF level are believed to be
responsible for the formation of higher order FQHE states
such as ! ! 4=11 and ! ! 4=13 that have p" ! 1=3 for
2CFs and 4CFs [3]. The experimental evidence for such
higher order states brings into question the validity of the

weakly interacting CF framework [4]. While these higher
order fractions were actually predicted in the earlier hier-
archical model [5,6], it was argued that the CF model may
account for these new fractions when CF residual interac-
tions are incorporated beyond the mean-field level [7–14].

Experimental evidence for the formation of a Landau
level structure of CFs is found in light scattering measure-
ments of spin-flip (SF) excitations in which the Landau
level number and orientation of spin change simulta-
neously [15]. At filling factors away from ! ! 1=3, the
lowest-lying SF excitations probe the level structure be-
cause the transitions in these excitations emanate from the
partially populated CF level as shown in Fig. 1 [16,17].
Since SF excitations can be observed at fractional values of
p, experiments that probe the lowest-lying SF modes are
powerful tools in studies of CF interactions at filling fac-
tors away from the major FQHE states.

In this Letter, we report measurements of low-lying SF
excitations by inelastic light scattering that reveal marked
quasiparticle interactions when there is partial population
of the j1; "i CF Landau level (0<p" < 1). The experi-
ments indicate a sharp onset of CF interactions that occurs
for p" 6 1=5. These results can be regarded as evidence
that emergence of higher order FQHE states away from
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FIG. 1. Composite Fermion level structure for !> 1=3 (2CF
or " ! 2 flux attachment, left) and !< 1=3 (4CF or " ! 4 flux
attachment, right) with the corresponding spin excitations: the
spin-flip (SF) and the spin-wave (SW). The dotted lines represent
the partially populated levels.
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filling factor ! ! 1=3 is linked to a transition from ‘‘free’’
to interacting behavior at a relatively low occupation of the
j1; "i CF level.

The sensitivity of low-lying SF modes to interactions
among CF quasiparticles occurs because, in a ‘‘single-
particle,’’ or free, CF paradigm (no impact of CF interac-
tions), the mode linewidths are expected to be independent
of p" and their light scattering intensities should be pro-
portional to p". We find that, at low values of p" < 0:2 !
1=5, the SF mode remains sharp (width " # 0:06 meV)
and its light scattering intensity indeed is linear in p" for
both !> 1=3 and !< 1=3. When p" > 1=5, however, the
light scattering spectra reveal marked departures from the
free CF behavior. The SF mode of 2CFs displays significant
broadening, with " reaching 0.1 meV for p" > 1=2, and the
light scattering intensities of SF modes of 2CFs and 4CFs
saturate when p" ! 1=2.

The broadening of the light scattering peak of SF modes
for p" > 1=5 suggests a small energy scale for 2CFs inter-
actions that is in the range of 0.1 meV. It is conceivable that
the broadening is linked to lower-lying collective excita-
tions that exist when there is partial population of the j1; "i
2CF level. In this scenario, the energy range for such
excitations would be comparable to the enhanced broad-
ening of SF excitations. Currently, there is no evaluation of
SF excitations as a function of p", but the observed broad-
ening energies are in the range of predictions for the energy
scale of residual CF interactions [11,13].

The inelastic light scattering measurements were per-
formed on a high quality GaAs single quantum well of
width 330 Å. The electron density is n ! 5:5$ 1010 cm%2

and its low temperature mobility is # ! 7:2$
106 cm2=V s. The sample was mounted on the cold finger
of a 3He=4He dilution refrigerator, with windows for opti-
cal access, that is inserted in the cold bore of a super-
conducting magnet. Cold finger temperatures can reach as
low as T ! 23 mK. The backscattering geometry was used
at an angle $ with the normal of the sample surface as
shown in the inset in Fig. 2. The magnetic field perpen-
dicular to the sample is B ! BT cos$ and BT is the total

field. The results reported here have been obtained with
$ ! 50& ' 2&. Resonant inelastic light scattering spectra
were obtained by tuning the incident photon energy of a
Ti:sapphire laser close to the fundamental optical gap of
GaAs to enhance the light scattering cross section. The
power density was kept below 10%5 W=cm2 to prevent
heating of the electron gas. The scattered signal was dis-
persed by a triple grating spectrometer working in additive
mode and analyzed by a CCD camera with 26 #m wide
pixels. With a slit width of 30 #m, the combined resolu-
tion of the system is about 0.02 meV.

Figure 2 shows that two low-lying spin excitations are
observed. In addition to the SF mentioned above, there is
the spin-wave excitation (SW) in which only the spin
orientation changes (%Sz ! '1) (see Fig. 1). By virtue of
the Larmor theorem, at long wavelengths the spin wave is
at the ‘‘bare’’ Zeeman energy Ez ! g#BBT , where #B is
the Bohr magneton and g is the Landé factor of GaAs. On
the other hand, the energies and line shapes of SF excita-
tions incorporate quasiparticle interactions that offer
probes of composite fermion physics [15–20]. At ! !
1=3, the only low-energy spin excitation observed is the
long wavelength SW mode at Ez. When the electron fluid
becomes compressible, for both !> 1=3 and !< 1=3, the
SF peak appears on the lower energy side of the SW mode.
The narrow linewidth of SF excitations on both sides of
! ! 1=3 (full width at half maximum or "< 0:06 meV)
suggests that j1; "i Landau levels of 2CFs and 4CFs are
sharp.

Figure 3 displays the evolution of the spectra of SF and
SW modes for !> 1=3 as a function of p". These spin
excitations are linked to (2CF) quasiparticles. It is imme-
diately apparent from these spectra that the SF mode line
shape and energy are strong functions of p". We con-
structed reasonably good fits to the spectra with two-
Gaussian functions, as shown in Fig. 3. A similar procedure
was carried out for 4CF when !< 1=3 (not shown in
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• The sub-Zeeman excitations are 
the tiniest avatars of skyrmions (i.e., 
CF quasiparticles or CF quasiholes 
dressed by a single spin-flip CF 
exciton). These have positive 
charge for , and 
negative for .  

• This provides an excellent 
quantitive account of experiment.  

• For sufficiently small Zeeman 
splittings, a QH or QP will 
spontaneously bind one or many 
spin-flip excitons.

ν < 1/3 (ν* < 1)
ν > 1/3 (ν* > 1)
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Fractionally charged skyrmions in fractional
quantum Hall effect
Ajit C. Balram1, U. Wurstbauer2,3, A. Wójs4, A. Pinczuk5 & J.K. Jain1

The fractional quantum Hall effect has inspired searches for exotic emergent topological

particles, such as fractionally charged excitations, composite fermions, abelian and

nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support

both topological charge and topological vortex-like spin structure, have also been predicted to

occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions,

however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman ener-

gies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the

fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies,

and appear in resonant inelastic light scattering experiments as well-defined resonances

slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound

states serves as a sensitive tool for investigating the residual interaction between composite

fermions, responsible for delicate new fractional quantum Hall states in this filling factor

region.
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skyrmions are seen to be qualitatively different, and much
smoother, than those of the composite fermion particle or
composite fermion hole (Figs 2 and 3), which is what results in
the lowering of the Coulomb energy. Despite the remarkably
different structures, they all carry a precise fractional charge of
magnitude e/3. Figure 4 shows the thermodynamic extrapolation
of the binding energy of the fractional skyrmions, denoted E!

b ,
obtained from exact diagonalization results for finite systems.

(The energy of FS! is given by EZ "E!
b .) The thermodynamic

limits for the binding energies are determined to be Eþ
b ¼

0:0096 2ð Þe2=E‘ and E"
b ¼ 0:0052 2ð Þe2=E‘ for a system with zero

thickness and no Landau level mixing.
The interpretation of the fractional skyrmions as bound states

of three composite fermions (see panels b and d of Fig. 1) is
confirmed by: the close agreement between the energies of the
exact and the composite fermion wave functions (that is, the
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Figure 2 | Contrasting negatively charged skyrmion with composite fermion (CF) particle. (a–c) show charge density profiles of a spin-conserving CF

particle, a spin-reversed CF particle, and a negatively charged fractional skyrmion. Their spin polarization, defined by r" rð Þ" r# rð Þ
! "

= r" rð Þþr# rð Þ
! "

where

r" rð Þ and r# rð Þ are the spatial densities of spin-up and spin-down composite fermions, is shown in d–f, respectively. The minimum/maximum values of the

colour bars in each panel are: (a) 0.303/0.453, (b) 0.333/0.456, (c) 0.333/0.391, (d) 1.000/1.000, (e) "0.352/1.000, (f) "0.512/1.000. The disk has a
radius of 12.5 ‘.
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Figure 1 | Comparison between theory and experiment. (a) shows the ground state for the fully polarized state for vt1/3 with a single composite fermion
(CF) hole (empty red circle) in the spin-up lowest LL (0m); (b) shows an additional spin-flip exciton (SFE) that binds with the hole to produce a minimal
positively charged fractional skyrmion (FS). (c) shows the state for v\1/3 with a single CF particle in the spin-down lowest LL (0k), and (d) has an
additional SFE. (e) has a CF particle in the spin-up second LL (1m), and (f) has an additional SFE. The composite fermions are shown as particles with two
arrows, representing bound vortices, and their up and down spin LLs are shown as shaded blue and red rectangles, respectively. In g–i the red dashes
(dots) show the exact (CF) energies of the ground states containing a single CF particle or hole (as shown in a,c,e) and the black symbols show the
spectrum obtained when an additional SFE is created (as shown in b,d,f). The spherical geometry is used for calculations; panel (g) is for eight particles
subjected to 22 flux quanta (a flux quantum is defined as f0¼ hc/e), and (h,i) correspond to 10 particles in 26 flux quanta. (j–l) show the experimentally
measured energies of modes below the Zeeman energy. The theoretical energy of the FSs in the dilute limit of n-1/3 including finite width correction is
also shown by blue square. Panels (j,l) are for 50! tilt, whereas (k) is for 30! tilt. All energies in j–l are shown relative to the Zeeman energy, in units of

e2=E‘, where E is the dielectric constant of the material and ‘ is the magnetic length. The modes depicted by red symbols are assigned to fractional
skyrmions, green stars in panel k to the excitation shown in Fig. 8d, and the black diamonds and purple stars in panel l to the excitation shown in Fig. 8i. The
theoretical error bars arise from the uncertainty in the Monte Carlo calculations and thermodynamic extrapolations, and the experimental error bar reflects
the uncertainty in the Lorentzian fits.
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Positively charged CF skyrmion ν < 1/3 (ν* < 1) Negatively charged CF skyrmion ν > 1/3 (ν* > 1)

skyrmions are seen to be qualitatively different, and much
smoother, than those of the composite fermion particle or
composite fermion hole (Figs 2 and 3), which is what results in
the lowering of the Coulomb energy. Despite the remarkably
different structures, they all carry a precise fractional charge of
magnitude e/3. Figure 4 shows the thermodynamic extrapolation
of the binding energy of the fractional skyrmions, denoted E!

b ,
obtained from exact diagonalization results for finite systems.

(The energy of FS! is given by EZ "E!
b .) The thermodynamic

limits for the binding energies are determined to be Eþ
b ¼

0:0096 2ð Þe2=E‘ and E"
b ¼ 0:0052 2ð Þe2=E‘ for a system with zero

thickness and no Landau level mixing.
The interpretation of the fractional skyrmions as bound states

of three composite fermions (see panels b and d of Fig. 1) is
confirmed by: the close agreement between the energies of the
exact and the composite fermion wave functions (that is, the
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Figure 2 | Contrasting negatively charged skyrmion with composite fermion (CF) particle. (a–c) show charge density profiles of a spin-conserving CF

particle, a spin-reversed CF particle, and a negatively charged fractional skyrmion. Their spin polarization, defined by r" rð Þ" r# rð Þ
! "

= r" rð Þþr# rð Þ
! "

where

r" rð Þ and r# rð Þ are the spatial densities of spin-up and spin-down composite fermions, is shown in d–f, respectively. The minimum/maximum values of the

colour bars in each panel are: (a) 0.303/0.453, (b) 0.333/0.456, (c) 0.333/0.391, (d) 1.000/1.000, (e) "0.352/1.000, (f) "0.512/1.000. The disk has a
radius of 12.5 ‘.
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Figure 1 | Comparison between theory and experiment. (a) shows the ground state for the fully polarized state for vt1/3 with a single composite fermion
(CF) hole (empty red circle) in the spin-up lowest LL (0m); (b) shows an additional spin-flip exciton (SFE) that binds with the hole to produce a minimal
positively charged fractional skyrmion (FS). (c) shows the state for v\1/3 with a single CF particle in the spin-down lowest LL (0k), and (d) has an
additional SFE. (e) has a CF particle in the spin-up second LL (1m), and (f) has an additional SFE. The composite fermions are shown as particles with two
arrows, representing bound vortices, and their up and down spin LLs are shown as shaded blue and red rectangles, respectively. In g–i the red dashes
(dots) show the exact (CF) energies of the ground states containing a single CF particle or hole (as shown in a,c,e) and the black symbols show the
spectrum obtained when an additional SFE is created (as shown in b,d,f). The spherical geometry is used for calculations; panel (g) is for eight particles
subjected to 22 flux quanta (a flux quantum is defined as f0¼ hc/e), and (h,i) correspond to 10 particles in 26 flux quanta. (j–l) show the experimentally
measured energies of modes below the Zeeman energy. The theoretical energy of the FSs in the dilute limit of n-1/3 including finite width correction is
also shown by blue square. Panels (j,l) are for 50! tilt, whereas (k) is for 30! tilt. All energies in j–l are shown relative to the Zeeman energy, in units of

e2=E‘, where E is the dielectric constant of the material and ‘ is the magnetic length. The modes depicted by red symbols are assigned to fractional
skyrmions, green stars in panel k to the excitation shown in Fig. 8d, and the black diamonds and purple stars in panel l to the excitation shown in Fig. 8i. The
theoretical error bars arise from the uncertainty in the Monte Carlo calculations and thermodynamic extrapolations, and the experimental error bar reflects
the uncertainty in the Lorentzian fits.
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dashes and the dots in Fig. 1); by a comparison of the density
profiles of the exact and composite fermion wave functions
shown in Fig. 5; and the high overlap of B0.99 between the exact
and the composite fermion wave functions for N¼ 12.

For an accurate quantitative comparison with the experiment,
we have estimated corrections due to finite transverse width of
the quantum well wave function. We first use a local density
approximation19 to obtain the transverse wave function x(z). The
effective two-dimensional interaction is given by:
Veff rð Þ ¼ e2

E

R
dz1

R
dz2

x z1ð Þj j2 x z2ð Þj j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z1 % z2ð Þ2

p , where z1 and z2 are the

coordinates perpendicular to the plane containing the electrons.
At short distances this interaction is softer than the Coulomb
interaction. For the fractional skyrmions, the change in the
energy due to finite width is shown in the inset of Fig. 4. We use
the composite fermion theory for obtaining the corrections due to
finite width, because it is possible to go to larger systems in CFD
than in exact diagonalization; the use of the composite fermion
theory is justified given the above result showing the accuracy of
the composite fermion theory. The finite size variations preclude
a clean extrapolation to the thermodynamic limit 1/N-0, but it
is clear that the binding energies for the fractional skyrmions are
reduced only by a small amount. We take the average of all points
in the inset of Fig. 4 as a measure of the reduction in the
fractional skyrmion binding energy due to finite width, which
gives for the positively and negatively charged fractional
skyrmions energy reductions of 0.0013±0.0005 and
0.0010±0.0001 e2=E‘, respectively (with the error given by the

standard deviation). We apply this correction to the binding
energies obtained from exact diagonalization.

Experiment. The experimental results presented in this work are
from RILS on a high-quality GaAs single quantum well of width
33 nm, electron density n¼ 5.5& 1010 cm% 2 and low-tempera-
ture mobility m¼ 7.2& 106 cm2Vs% 1. The magnetic field per-
pendicular to the sample is B¼BTotalcosy, where y is the tilt of
the sample with respect to the direction of the total magnetic field
BTotal. The filling factor and magnetic length depend on the
perpendicular field B, whereas the Zeeman energy on the total
field BTotal, and thus tilting can be used to vary the parameter
k (k is defined as the ratio of the Zeeman to Coulomb energy).
Measurements were taken at two tilt angles, y¼ 30!±2! and
y¼ 50!±2!, which correspond to kE0.018 and kE0.023. RILS
spectra were obtained by tuning the incident laser photon energy
Elaser to be close to the fundamental optical gap of GaAs to
enhance the light-scattering cross-section. To identify all modes,
it is important to scan over a range of energies of the incoming
laser photon, because modes are picked out by resonant Raman
scattering most prominently in a narrow range of parameters
where the resonance condition is best satisfied. As seen in
Fig. 6a,b, three modes can be identified for 30! tilt, whereas only
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Figure 3 | Contrasting the positively charged skyrmion with the
composite fermion (CF) hole. (a,b) show charge density profiles of a CF
hole and a positively charged fractional skyrmion. Their spin polarization,

defined by r" rð Þ% r# rð Þ
" #

= r" rð Þþr# rð Þ
" #

where r" rð Þ and r# rð Þ are the

spatial densities of spin-up and spin-down composite fermions, is shown in
c,d, respectively. The minimum/maximum values of the colour bars in each
panel are: (a) 0.006/0.357, (b) 0.266/0.333, (c) 1.000/1.000,
(d) %0.695/1.000. The disk shown has a radius of 12.5 ‘.
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Figure 4 | Thermodynamic extrapolation of the binding energies of the
fractional skyrmions. The blue (red) symbols show the energies of
negative (positive) fractional skyrmions for a system of N particles with
zero transverse width, obtained from exact diagonalization. The inset shows
the amount by which finite-width corrections lower the energy of the
fractional skyrmion (FS) for a sample of width 33 nm.
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Figure 5 | Comparison of exact and composite fermion (CF) density
profiles for fractional skyrmions. This figure shows the total density (r)
and the density of spin-up particles r"

" #
for fractional skyrmion (FS% )

(blue) and FSþ (red) obtained from exact (dotted and dashed lines) and CF
diagonalization (filled and empty symbols). A near perfect overlay of the

CF and exact curves shows that the wave function of the FS' obtained from
CF diagonalization is almost identical to the exact one. The results are
for 12 particles, and the density is quoted in units of the density of the
uniform 1/3 state, denoted by r0.
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Figure 6 | Excitations in resonant inelastic light scattering spectra.
(a,b) show typical spectra at n¼0.36 for y¼ 30! and y¼ 50!, respectively,
as a function of the incident laser energy Elaser.
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dashes and the dots in Fig. 1); by a comparison of the density
profiles of the exact and composite fermion wave functions
shown in Fig. 5; and the high overlap of B0.99 between the exact
and the composite fermion wave functions for N¼ 12.

For an accurate quantitative comparison with the experiment,
we have estimated corrections due to finite transverse width of
the quantum well wave function. We first use a local density
approximation19 to obtain the transverse wave function x(z). The
effective two-dimensional interaction is given by:
Veff rð Þ ¼ e2

E

R
dz1

R
dz2

x z1ð Þj j2 x z2ð Þj j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z1 % z2ð Þ2

p , where z1 and z2 are the

coordinates perpendicular to the plane containing the electrons.
At short distances this interaction is softer than the Coulomb
interaction. For the fractional skyrmions, the change in the
energy due to finite width is shown in the inset of Fig. 4. We use
the composite fermion theory for obtaining the corrections due to
finite width, because it is possible to go to larger systems in CFD
than in exact diagonalization; the use of the composite fermion
theory is justified given the above result showing the accuracy of
the composite fermion theory. The finite size variations preclude
a clean extrapolation to the thermodynamic limit 1/N-0, but it
is clear that the binding energies for the fractional skyrmions are
reduced only by a small amount. We take the average of all points
in the inset of Fig. 4 as a measure of the reduction in the
fractional skyrmion binding energy due to finite width, which
gives for the positively and negatively charged fractional
skyrmions energy reductions of 0.0013±0.0005 and
0.0010±0.0001 e2=E‘, respectively (with the error given by the

standard deviation). We apply this correction to the binding
energies obtained from exact diagonalization.

Experiment. The experimental results presented in this work are
from RILS on a high-quality GaAs single quantum well of width
33 nm, electron density n¼ 5.5& 1010 cm% 2 and low-tempera-
ture mobility m¼ 7.2& 106 cm2Vs% 1. The magnetic field per-
pendicular to the sample is B¼BTotalcosy, where y is the tilt of
the sample with respect to the direction of the total magnetic field
BTotal. The filling factor and magnetic length depend on the
perpendicular field B, whereas the Zeeman energy on the total
field BTotal, and thus tilting can be used to vary the parameter
k (k is defined as the ratio of the Zeeman to Coulomb energy).
Measurements were taken at two tilt angles, y¼ 30!±2! and
y¼ 50!±2!, which correspond to kE0.018 and kE0.023. RILS
spectra were obtained by tuning the incident laser photon energy
Elaser to be close to the fundamental optical gap of GaAs to
enhance the light-scattering cross-section. To identify all modes,
it is important to scan over a range of energies of the incoming
laser photon, because modes are picked out by resonant Raman
scattering most prominently in a narrow range of parameters
where the resonance condition is best satisfied. As seen in
Fig. 6a,b, three modes can be identified for 30! tilt, whereas only
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Figure 3 | Contrasting the positively charged skyrmion with the
composite fermion (CF) hole. (a,b) show charge density profiles of a CF
hole and a positively charged fractional skyrmion. Their spin polarization,

defined by r" rð Þ% r# rð Þ
" #

= r" rð Þþr# rð Þ
" #

where r" rð Þ and r# rð Þ are the

spatial densities of spin-up and spin-down composite fermions, is shown in
c,d, respectively. The minimum/maximum values of the colour bars in each
panel are: (a) 0.006/0.357, (b) 0.266/0.333, (c) 1.000/1.000,
(d) %0.695/1.000. The disk shown has a radius of 12.5 ‘.
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Figure 4 | Thermodynamic extrapolation of the binding energies of the
fractional skyrmions. The blue (red) symbols show the energies of
negative (positive) fractional skyrmions for a system of N particles with
zero transverse width, obtained from exact diagonalization. The inset shows
the amount by which finite-width corrections lower the energy of the
fractional skyrmion (FS) for a sample of width 33 nm.
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Figure 5 | Comparison of exact and composite fermion (CF) density
profiles for fractional skyrmions. This figure shows the total density (r)
and the density of spin-up particles r"

" #
for fractional skyrmion (FS% )

(blue) and FSþ (red) obtained from exact (dotted and dashed lines) and CF
diagonalization (filled and empty symbols). A near perfect overlay of the

CF and exact curves shows that the wave function of the FS' obtained from
CF diagonalization is almost identical to the exact one. The results are
for 12 particles, and the density is quoted in units of the density of the
uniform 1/3 state, denoted by r0.
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Figure 6 | Excitations in resonant inelastic light scattering spectra.
(a,b) show typical spectra at n¼0.36 for y¼ 30! and y¼ 50!, respectively,
as a function of the incident laser energy Elaser.
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Aron was a great physicist and a wonderful human being.
He had a profound impact on many lives including mine.

He was a dear friend and I shall always miss him.


