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Workflow based on Machine Learning (ML)
allows prediction of DFT results with O(N) cost

Step 1 Step 2 Step 3
Fingerprint generation Trained ML-DFT model ML-DFT analysis

Atomic SNAP Machine-learning Total
: . . . : LDOS
configuration fingerprints inference energy
.t ’ ‘ll%‘ (12 2 S . ; .‘ s |

63300 o DFT LDOS Targets
©  ML-Hybrid Predictions

—63200 —— Liquid/Solid Snapshots

—63100

o P
o 8 o
~63000 08°08°680

tal Energy (meV/atom)

o o
80880 8
S _629001 ° 08°0

T

0 15

5 10
Al 933K Snapshot

(a) Atomic configuration (b) SNAP descriptors (c) A Feed-forward (d) The Local Density (e) Densities, band

described by positions  calculated on a grid of  neural network runs of States (LDOS) is energies, total energies,

and types of atoms points encode the local independently at each  predicted at each grid  forces, etc. are calculated
structure at each point  grid point point from the LDOS

« Relative to DFT, the only new approximation is the determination of the LDOS
using a local ML model rather than by solving the Kohn-Sham equations

« Computations are independent at each point except for sums across points
and calculation of the Hartree energy

« Once the ML model has been trained on the LDOS for cells where DFT
calculations are practical, the model can be accurately and efficiently applied
to much larger systems.
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SNAP Descriptors Encode the Local Structure
Near to Each Point in a Cartesian Grid

Spectral neighbor analysis potential (SNAP) descriptors (A. P. Thompson et al, J. Compuit.
Phys. 285, 316 (2015)) are computed on a grid of points. Expand the “atom density”
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Then, descriptors are rotationally invariant tensor products of the expansion coefficients
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At Each Grid Point, a Feed-Forward Neural
Network Predicts the LDOS from the Descriptors
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A series of transformations on the input vector of descriptors yields the output vector of LDOS
values for a grid of energies. The transformation at each layer is

e+l _ ¢ e ¢
Vin,1) = go(W Vim,1) T Bn,1)

(n,m)

where @ is a non-linear activation function, and the weight matrices W
are optimized to fit the training data using backpropagation gradients.
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and bias vectors bf,,,l)j

The predictions for a separate set of validation data are monitored to prevent over-fitting

As an outer loop, the hyperparameters used in training the model are optimized

To predict 250 LDOS values from 91 fingerprints at each point of a 200x200x200 grid, a typical
network has 5 layers with a maximum width of 800-4000 and the LeakyRelL U activation function
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Calculated with DFT for ~256 Atom Cells
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For training, the LDOS is calculated from the Kohn-Sham wavefunctions and energies as
N N;
D(e.r;R)=N"Y ") " ¢, (r: B> 8(c — €jx,)
ko

where §(x) = exp (—x?/0?)/~/mo? represents a Dirac delta function. A fine grid of k-points is
needed to get a smooth LDOS without excessive smearing. From the DFT or predicted LDOS,
the electronic density and DOS are calculated as

n[D](r;R) = /de fP(e)D(e, r; R). D[D](¢; R) =/er(6,r;L!)-

where we solve for the Fermi level in f?(€) that gives the correct total number of electrons.
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Evaluating the DFT Total Energy from the LDOS

~ _63300 © DFT LDOS Targets

S © ML-Hybrid Predictions |
§ 63200 - —— Liquid/Solid Snapshots

Q

E

> —63100 -

9 O 8 o o]

£ ~63000 °08%08°g80 I
© o o

= e8o0880 8

© ~62900- 08°0

0 5 10 15
Al 933K Snapshot

The DFT total free energy can be expressed as
AP°IDIR) = E,[D] — S5[D]/B — U[D] +Exc[D] — Vxc[D] + V" (R),

where the band energy and electronic entropy are determined from the DOS by

E,[D] = f de fP(e)e DID](¢; R)

Ss[D] = — / de {f*(e)1og[f? ()] +[1 — fP(e)]log[1 — f*(e)}DID1(€; R)
The density determines the Hartree energy U [n[D]], Exchange-Correlation energy Exc[n[D]], and
Vxc[D] = [ dr n[D](r;R) 8Exc[D]/én[D](r; R)



Evaluating Forces (Mostly Implemented!)

Calculated with ML In LAMMPS In Quantum

Backpropagation / Espresso
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Most terms are done. Could use advice on using Quantum
Espresso to evaluate: 5
0°E,. ‘

on(r')én(r)

D(eyr;)

j dr' n(r'’)

Center 1800: Material, Physical and Chemical Sciences




Accurate and Efficient Results for Systems
Sizes that are not Accessible with DFT

10 .
:; | | | : 6_ T T """] T T T TTTTT T T T TTTTT T T T TTTTT ]
;i X gldividuaéEHors S O DET
o erage Error ] : -
z SR 210" | = MLDFT
% 0_—x 18 4:_ —:
=~ I 810
> L X (D] - i
Q 5_x ] /)] 3
E :X ) 1 10 IE_ _E I
T = § X S I R z
5100, ¥ x R4 B0k E
b X X % 10 = E
ad X Z. iF . |
F 1 10
:¥ | ] O_ Ll Lol Ll Ll |
2035108 256 364 372 101()1 10° 10° 10* 10°
Number of Atoms Number of Atoms

Model trained on 256 atoms systems give << 1 kcal/mol errors for 864 and 1372 atoms
« Tests use 10 snapshots of room temperature thermalized aluminum

» A significant portion of errors are systematic — Probably do not matter in practice

» Errors somewhat larger for smaller systems --- Effects of periodicity are missing

ML approach scales linearly with system size, i.e., O(N), DFT scales as O(N3)
« ML approach feasible for >10% atoms, DFT becomes difficult for more than a thousand
» Crossover at ~100 atoms, or less for fully k-point converged DFT
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Proposed Applications that are Very Challenging
for Conventional Interatomic Potentials

Example 1: Charged defects in semiconductors or insulators
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Modeling changes in defect
charge state and structure
with Fermi level requires
capturing a complex,
structure-dependent DOS
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Example 2: The effects of electronic temperature on MD
« We get the dominant effects of electronic temperature automatically

Example 3: Metal-insulator transitions due to structural changes
* Properties are discontinuous when the band gap closes
« We explicitly treat the transition from metal to insulator
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‘ Getting More Information

Code is publicly available!
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