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INTRODUCTION
Density functional theory (DFT) is a clever and convinient way of solving the com-
plex schrödinger equations for many-electron systems (K. Burke et al, 2007). Clever
and convenient in the sense that the solution of complex many-body Schrödinger
equation with N-number of electrons which depends on 3N coordinates is abadoned
in favour of the density which depends on three spatial coordinates only (K. Burke
et al, 2007).
The total energy is now a function of this function (density), hence the name den-
sity functional.
DFT has its foundation in the two theorems formulated by Hohenberg and Kohn
in 1964: The first one says that the external potential of an interacting system is
unique functional of the density and the second one shows that there is a univer-
sal functional for the energy which can be defined in terms of the density. The
methodology of DFT is applied in many fields such as Condensed Matter Physics,
Quantum Chemistry, Materials Science, many branches of Engineering etc and to
many different problems, with the ground-state electronic structure problem being
the most common. DFT is accurate in the prediction of some properties of many
materials, such as shapes and sizes of molecules, crystal structures, ionization en-
ergies, band structures, electron affinities, binding or atomisation energies, static
response functions, etc. One major limitation of practical DFT however is that
it underestimates the size of the gap between the energy of the highest occupied
single particle state and the lowest unoccupied single particle state.

THEORETICAL BACKGROUND
The time-independent Schrödinger equation for many-electron complex system
which we are to solve is:
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The first term on the LHS is the kinetic energy of the electrons, the second is the
kinetic energy of the nuclei, the third is the coulomb interaction between electrons,
the last two terms are respectively the coulomb interaction between the nuclei and
the electrons and the nuclear-nuclear interactions. The variable ri is the position of
the ith electron, m is the electron mass, Rα is the position of the αth nucleus, Mα

is the mass of the nucleus, Zα is the charge on the αth nucleus and the factor ( 1
2 )

preceeding the electron-electron and nuclear-nuclear interactions is there to avoid
double counting
From a pragmatic point of view, problems involving quantum manybody systems
are very difficult to track down; they are much more difficult than classical me-
chanical problems. The reason is that for N electrons, the manybody wavefunction
ψ is a function of 3N variables, ψ = ψ(r1, ..., rN), where ri , (i = 1, ...,N) is a
3-dimensional position vector. Highly accurate numerical representation of such
functions is close to impossible for N > 2 hence approximated in electronic struc-
ture methods.

The first approximation is known as Bohn-oppenheimer Approximation, it
comes by considering that the electrons are moving very fast while the nu-
clei are moving very slowly. Thus, we consider the mass of the nuclei as infinite
compared with that of electrons. Thus, as a result of that, the kinectic energy
part for the nuclei in the equation vanishes. The equation now becomes (M.
Born and J.R. Oppenheimer,1927).
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where we have used atomic units ~ = e2 = m = 4πε0 = 1.

The last term of (2) i.e. the nuclear-nuclear interaction is a constant. In density
functional theory (DFT) formalism, the nuclear-nuclear interaction is irrelevant
so it is neglected for convinience sake.
we take rij ≡ |ri − rj | so that the Schrödinger equation for a many electron
system becomes:
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where vext(ri) =
∑

α
Zα

|Rα−ri | (typically) is the external potential between the
electrons and the nuclei.

In the Kohn-Sham approach, the kinetic energy of the system of interacting
particles is assumed to be non-interacting, so using one-electron orbital, they
gave a beautiful equation for non-interacting system as follows;
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where φi(r) are the one-electron orbitals and εi are the eigenvalues of the Kohn-
Sham one-electron orbitals.

ABSTRACT
In Density Functional Theory formalism, the total energy functional of a system
consists of known and unknown parts, the known part consists of kinetic energy
of the non-interacting system, the external potential energy and the Hartree or
classical coulomb interaction between the electrons. The existence of the unknown
part was established by P. Hohenberg and W. Kohn in 1964 and it is known as the
Exchange-Correlation Energy which is the major component necessary for accurate
prediction of properties of materials.
The true mathematical form of this exchange-correlation Energy is not known,
hence, approximations are made for it which reduces the accuracy of DFT, par-
ticularly in the case of energy band gaps. In this work, an exchange-correlation
potential functional is formulated which is the modification of Hanke and Sham
functional in 1998.
The functional was incorporated into the Quantum espresso software package and
was used to perform plane-wave based calculation and energy band gaps of some
systems were predicted from the formulated functional.
From our functional, we got band gap for Silicon to be 1.10eV which is closer to the
experimental value of 1.12eV than that of LDA which is 0.47eV, for Silicon Carbide,
experimental value is 2.40eV and we obtained 2.27eV with our functional which is
more accurate than 1.35eV from LDA. For Aluminium Phosphate, our method gave
2.28eV while the experimental value is 2.45eV. All these are of error of approximately
6 percent, comparing with the experimental values and LDA results, the exchange-
correlation functional in this work has given better predictions of energy band gaps
than LDA.

METHODOLOGY
The new exchange-correlation potential functional proposed in this work is shown
in equation (5) below and termed as the ”UI exchange-correlation potential:
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It differs from Hanke and Sham exchange-correlation functional (Hanke and Sham
1998) in the introduction of an empirical parameter ”c” multiplying the Penn gap
Ep. In this expression, Ep, ωp Nval , V0 e and m are, respectivelly, the Penn gap (D.
R. Penn,1962), plasma frequency, number of valence electrons per primitive unit
cell, volume of the primitive unit cell, electronic charge and electron mass.

uiα = [1− 2ωp

Nval(ωp + cEp)
] (6)

the parameter c included is an enhancement factor which is constant throughout
our calculation.
In the contribution, the local density approximation for ωp, the plasma frequency
was used:

ωp =

√
4πNvale2

mV0
. (7)

We work in atomic units, so that 4πε0 = m = e = ~ = 1 The new exhange-
correlation functional was used with LDA pseudopotential (e.g Perdew-Zurger type
of pseudopotential) and Self Consistent Field (scf) calculations were done.
The Kohn-Sham equations were solved using plane-wave basis sets. For all the
systems considered, the Brillouin zone was sampled with an unshifted 4 × 4 × 4
in Quantum Espresso (Monkhost-Pack grid of k-points) and kinetic energy cut-off
(ecutwfc) of 60Ry . Optimization of the functional were carried out for different
values of λ , in order to obtain corresponding values of average energy gaps which
we denote as cEp − perl . From the expression for the λ,

uiα = [1− 2ωp

Nval(ωp + cEp)
],

making the cEp the subject of the relation of equation (5) yields our cE analytic
p to

be:

cE analytic
p = ωp(

2
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− 1) (8)

where the plasma frequency ωp were calculated analytically by using equation(7).
The cE analytic

p for each value of uiα by substituting the values of ωp and the Nval

for each system. The two values, cE analytic
p and cE perl

p were plotted on the same
graph against the corresponding values of uiα. The optimal values of uiα for the
different systems considered were obtained and recorded. The optimal ui ′αs were
now used to run our band structure calculations for each system and the band gaps
were calculated.

RESULTS
our calculations were done for different values of uiα, the corresponding values
cE perl

p were generated while cE analytic
p was calculated analytically. Some of the plots

are shown below. The intersections of the two curves were noted which give the
values of the optimal uiα . The value of the optimal uiα were then used to run
our band structure calculations. We have calculated the band gaps of each system
as ELUMO − EHOMO, where ELUMO is energy of the lowest unoccupied molecular
orbital and EHOMO is the energy of the highest occupied molecular orbital.

Figure: Plot of cEp-analytic (purple line), cEp-perl (green line with points) vs ui-alpha for Silicon

Optimal uiα = 0.97

Figure: Plot of cEp-analytic (purple line), cEp-perl (green line with points) vs ui-alpha for SiC

Optimal uiα = 0.98

Table: Table of results for the calculation of band gaps

Solid Exp. LDA (Lit.) Error(%) LDA (this work) Optimal uiα Xα Error(%)
Si 1.17 0.47 59.8 0.47 0.97 1.10 5.98
BN 6.25 4.39 29.76 4.36 0.98 5.66 9.40
SiC 2.40 1.35 43.75 1.36 0.98 2.27 5.40
AlP 2.45 1.46 40.41 1.43 0.97 2.28 6.90
GaN 3.20 1.63 49.06 2.16 0.94 2.79 12.80
Ar 14.20 8.16 42.54 8.12 0.99 10.67 24.90
GaAs 1.52 0.30 80.26 1.24 0.97 1.70 11.80
LiCl 9.40 6.06 35.53 5.90 0.98 7.21 23.30

RESULTS
our calculations were done for different values of uiα, the corresponding values cE perl

p

were generated while cE analytic
p was calculated analytically. The plots are shown

below. The intersections of the two curves were noted which give the values of the
optimal uiα . The value of the optimal uiα were then used to run our band structure
calculations. We have calculated the band gaps of each system as ELUMO−EHOMO,
where ELUMO is energy of the lowest unoccupied molecular orbital and EHOMO
is the energy of the highest occupied molecular orbital.
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Figure: Band structure of Silicon using the method in this work

ELUMO ≈ 4.50, EHOMO ≈ 3.30, Eg ≈ 1.2
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Figure: Band structure of Silicon using LDA method

ELUMO ≈ 6.50, EHOMO ≈ 5.91, Eg ≈ 0.59

DISCCUSION
The results for our calcalations of band gaps (a.k.a Xα) for the systems considered
above were compared with experimental values and that of LDA in literature (F.
Tran and P. Blaha Phys. 2009). As mentioned earlier that LDA is the first approx-
imation in DFT, it gives underestimation espectially in the case of band gaps. As
depicted in the tables (1) there is a bit enormous disparities between LDA calcu-
lations and experimental values of the band gaps. It is noted that there is atleast
some agreement between the experimental values and the calculations in this work
for many of the systems considered.
It shows that there is a better agreement between our calculations and experimental
values compared to LDA results. This means our formulated exchange-correlation
functional has better predictive power of band gaps than LDA. Thus, a major
setback in DFT, mentioned earlier in the previous chapter has been partly overcome.

CONCLUSION
The new exchange-correlation potential has been formulated as presented above
and incorporated into Quantum espresso software. This functional is easy-to-work-
with (less bulky) compare to some functionals and computationally cost effective.
Approximation of the total energy and the band structure calculations of some
solids have been done using this functional and the results for the calculation of
their band gaps are presented in the table (1) which are in very good agreement
with the experiment for some of the solids considered especially in case of Si, BN,
SiC and AlP with respectively percentage error of 5.98%, 9.4%, 5.4% and 6.9%.
therefore we have improved upon LDA at very little additional costs.
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