CHIRAL PHONONS FROM BROKEN TIME REVERSAL SYMMETRY IN CRI₃

FLATIRON INSTITUTE Center for Computational Quantum Physics

SIMONS FOUNDATION

John Bonini¹, Shang Ren², David Vanderbilt², Cyrus Dreyer^{1,3}, Massimiliano Stengel^{4,5}, Sinisa Coh⁶ ⁺FLATIRON INSTITUTE, ²RUTGERS UNIVERSITY, ³STONY BROOK UNIVERSITY, ⁴ICMAB-CSIC, ⁵ICREA, ⁶UC RIVERSIDE

How to obtain broken time reversal ion dynamics from first principles?

- Obtain correct symmetry properties of time reversal broken system
- Pairs of otherwise degenerate modes now split to left and right chiral states
- Split modes can have angular momentum

Microscopic source of Berry curvature

 Freezing in nuclear displacements can tilt spins on Cr

Constant is Berry curvature with ionic positions

 $G_{I\kappa,J\kappa'} = 2\hbar \mathrm{Im} \langle \frac{\partial \psi}{\partial u_{I\kappa}} \mid \frac{\partial \psi}{\partial u_{J\kappa'}} \rangle$

Now phonons found with: $(\mathbf{C} - i\omega_n \mathbf{G}) \eta_n = \mathbf{M}\omega_n^2 \eta_n$ Mead and Truhlar, Chem. Phys. 70, 2284 (1979) Qin et al., PRB 86, 104305 (2012) Saito et al., PRL 123, 255901 (2019) Saparov et al. PRB 105, 064303 (2022)

Velocity force matrix from first principles

Need $G_{I_{\mathcal{K},J_{\mathcal{K}'}}} = 2\hbar \operatorname{Im} \langle \frac{\partial \psi}{\partial u_{I_{\mathcal{K}}}} | \frac{\partial \psi}{\partial u_{J_{\mathcal{K}'}}} \rangle$ Discrete Berry phase approach: Assume constant G in small space of nuclear displacements

 $\iint_{S} \left\langle \frac{\partial \psi}{\partial u_{I\kappa}} \right| \frac{\partial \psi}{\partial u_{J\kappa'}} \right\rangle = \operatorname{Imln} \left[\left\langle \psi(\underline{R}) \right| \psi(\underline{R} + u_{I\kappa}) \right\rangle$

- On closed path spins can sweep out a solid angle and pick up a phase
- In CrI₃ Berry phase is almost entirely described by Cr spin canting

Beyond adiabatic theory

- Adiabatic theory only appropriate if spin degrees of freedom are "fast" with respect to nuclear dynamics $H = \sum_{i} \frac{p_i^2}{2m_i} + \frac{1}{2} \sum_{ij} C_{ij} u_{i}$
- Otherwise must consider phonon and spin excitations on the same footing
- Quantitative results change

Example Material Crl₃

FM insulator w/ strong SOC
R3 space group
At Γ space group has 2D
irreps

 \rightarrow degenerate phonon modes

Time reversal is broken Corresponding magnetic space group has only 1D irreps

 \rightarrow no symmetry enforced degeneracy

significantly, with largest splitting reduced by over 2 orders of magnitude!

	Frequency (meV)		
Mode	Conly	Adiabatic	Non- adiabatic
12	12.723819	12.36314	12.722631
13	12.723819	13.118631	12.725151

 $\frac{1}{2}\sum A_{\alpha\beta}s_{\alpha}s_{\beta} + \sum \Gamma_{i\alpha}u_{i}s_{\alpha}$

 $\partial^2 E$

 $\partial S_{\alpha} \partial S_{\beta}$

 $\partial^2 E$

 $\partial \mathcal{U}_i \partial S_o$

Conclusions

- Magnetic order can split phonon modes, requires a treatment beyond the force constant matrix
- Resulting phonons can have chiral character and angular momentum
- In CrI₃ the adiabatic Berry phase theory vastly overestimates splitting of some modes

Outlook

- Full first principles non-adiabatic magnon-phonon coupling
- DFPT implementation
- Calculations for other materials, including metals
- First principles approaches to Phonon Hall effect and other observables