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CHIRAL PHONONS FROM BROKEN TIME REVERSAL 
SYMMETRY IN CRI3 
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Motivation

C(−M)
ij = −

∂2E
∂ui∂uj

= C(M)
ij

Fi = CijΔuj

Phonons are typically 
computed from the force 
constant matrix ( )C

 is invariant under time 
reversal, even for 
magnetic systems

C

How to obtain broken time reversal ion dynamics 
from first principles?

Adiabatic theory

Results in velocity dependent force

GIκ,Jκ′ 
= 2ℏIm⟨

∂ψ
∂uIκ

∣
∂ψ

∂uJκ′ 

⟩

Constant is Berry curvature 
with ionic positions

(C − iωnG) ηn = Mω2
nηn

Now phonons found with:

i

j

Velocity

Force

M M

M M

M M M

M

M

M

M M M M

j

I

Displacement

Force

Cηn = Mω2
nηn

Frequencies and eigenvectors 
are found by solving

Velocity force matrix from first principles

∫ ∫S
⟨

∂ψ
∂uIκ

|
∂ψ

∂uJκ′ 

⟩ = Imln[⟨ψ(R) |ψ(R + uIκ)⟩

⟨ψ(R + uIκ) |ψ(R + uJκ′ 
)⟩

⟨ψ(R + uJκ′ 
) |ψ(R)⟩]

GIκ,Jκ′ 
= 2ℏIm⟨

∂ψ
∂uIκ

∣
∂ψ

∂uJκ′ 

⟩Need

Discrete Berry phase approach:

FM insulator w/ strong SOC 
 space group 

At  space group has 2D 
irreps 

degenerate phonon  
    modes 

Time reversal is broken 
Corresponding magnetic 
space group has only 1D 
irreps 

no symmetry enforced        
    degeneracy 
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Single layer top view:

Example Material CrI3

First principles adiabatic theory results

Microscopic source of Berry curvature

Conclusions

Beyond adiabatic theory

• Full first principles non-adiabatic magnon-phonon coupling

• DFPT implementation

• Calculations for other materials, including metals

• First principles approaches to Phonon Hall effect and other 

observables

Force constant 
matrix

Displacement

Force-velocity 
matrix

−mI
d2uIκ

dt2
= ∑

Jκ′ 

CIκ,Jκ′ 
uJκ′ 

+ ∑
Jκ

GIκ,Jκ′ 

duJκ′ 

dt

• Obtain correct symmetry properties of time reversal broken 
system


• Pairs of otherwise degenerate modes now split to left and right 
chiral states


• Split modes can have angular momentum

Phonons at Γ

• Freezing in nuclear displacements can tilt 
spins on Cr


• On closed path spins can sweep out a solid 
angle and pick up a phase


• In CrI3 Berry phase is almost entirely 
described by Cr spin canting


• Adiabatic theory only 
appropriate if spin degrees of 
freedom are “fast” with respect 
to nuclear dynamics


• Otherwise must consider 
phonon and spin excitations on 
the same footing


• Quantitative results change 
significantly, with largest  
splitting reduced by over 2 
orders of magnitude!

Frequency (meV)

Mode C only Adiabatic Non-
adiabatic

12 12.723819 12.36314 12.722631

13 12.723819 13.118631 12.725151

Cij =
∂2E

∂ui∂uj
Aαβ =

∂2E
∂sα∂sβ

Γiα =
∂2E

∂ui∂sα

H = ∑
i

p2
i

2mi
+

1
2 ∑

ij

Cijuiuj

+
1
2 ∑

αβ

Aαβsαsβ + ∑
iα

Γiαuisα

Outlook

• Magnetic order can split phonon modes, requires a treatment 
beyond the force constant matrix


• Resulting phonons can have chiral character and angular 
momentum


• In CrI3 the adiabatic Berry phase theory vastly overestimates 
splitting of some modes
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Assume constant  in small space of 
nuclear displacements

G

Divide by area of  to obtain S GIκ,Jκ′ 

    | ⟩     | ⟩

    | ⟩

S

    | ⟩     | ⟩

    | ⟩

Force constant 
matrix only

Velocity force 
matrix included

Nuclei

mass

∑
j

(−iℏ∇uj
+ −iℏ⟨ψ0 |∇uj

|ψ0⟩)
2

2mj
+ Veff χi = Ei χi

Effective vector potential acting on nuclei


