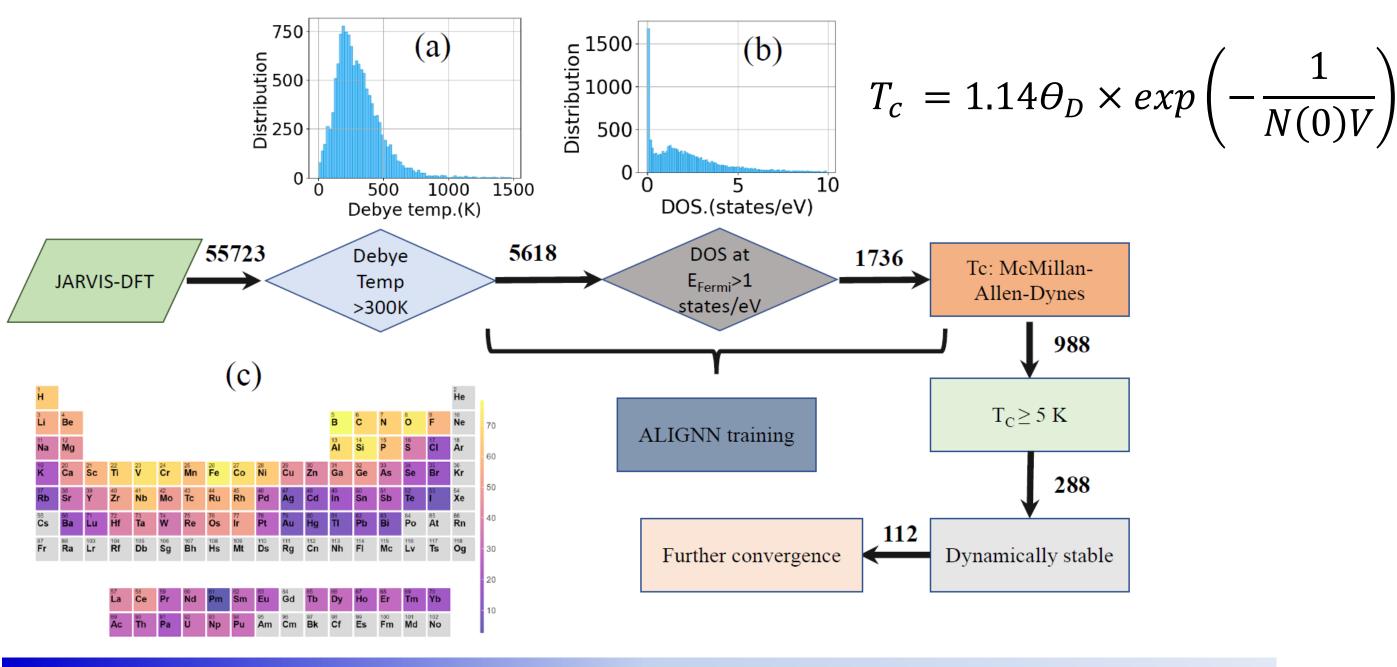


Designing High-Tc Superconductors with BCS-inspired Screening, **Density Functional Theory and Deep-learning**

Kamal Choudhary & Kevin F. Garrity Materials Measurement Laboratory, National Institute of Standards and Technology, MD, USA https://jarvis.nist.gov

Motivation


- Identify high-T_c conventional (phonon-mediated) superconductors
- **Electron-phonon coupling (EPC) parameter database**
- Deep-learning models to predict superconductor properties

Superconductivity

- Materials to conduct electricity without energy loss when they are cooled below a critical temperature, T_{c}
- MgB₂ ($T_c = 39$ K): Highest T_c ambient condition conventional superconductor
- High-pressure hydrides for near room-temperature superconductivity such as LaH₁₀, YH₁₀

Workflow

- Using JARVIS-DFT database (55723 materials)
- **Debye temperature from elastic tensors (17419)**
- **Density of states at Fermi-level**

DFT Calculations

- Quantum espresso-based Electron-phonon coupling
- T_c calculated with McMillan-Allen-Dynes equation
- Benchmarking using known compounds
- JARVIS-DFT k-points
- At least 2x2x2 q-points
- Broadening & tetrahedron methods $\lambda = 2 \int \frac{\alpha^2 F(\omega)}{d\omega} d\omega$

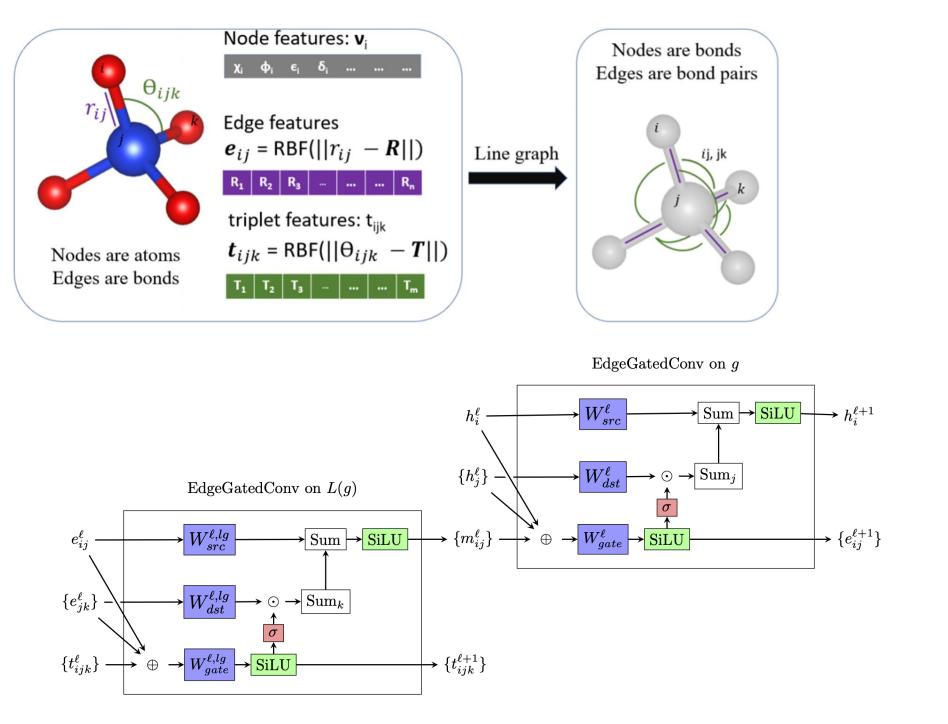
$$T_{c} = \frac{\omega_{log}}{1.2} \exp\left[-\frac{1.04(1+\lambda)}{\lambda - \mu^{*}(1+0.62\lambda)}\right]$$

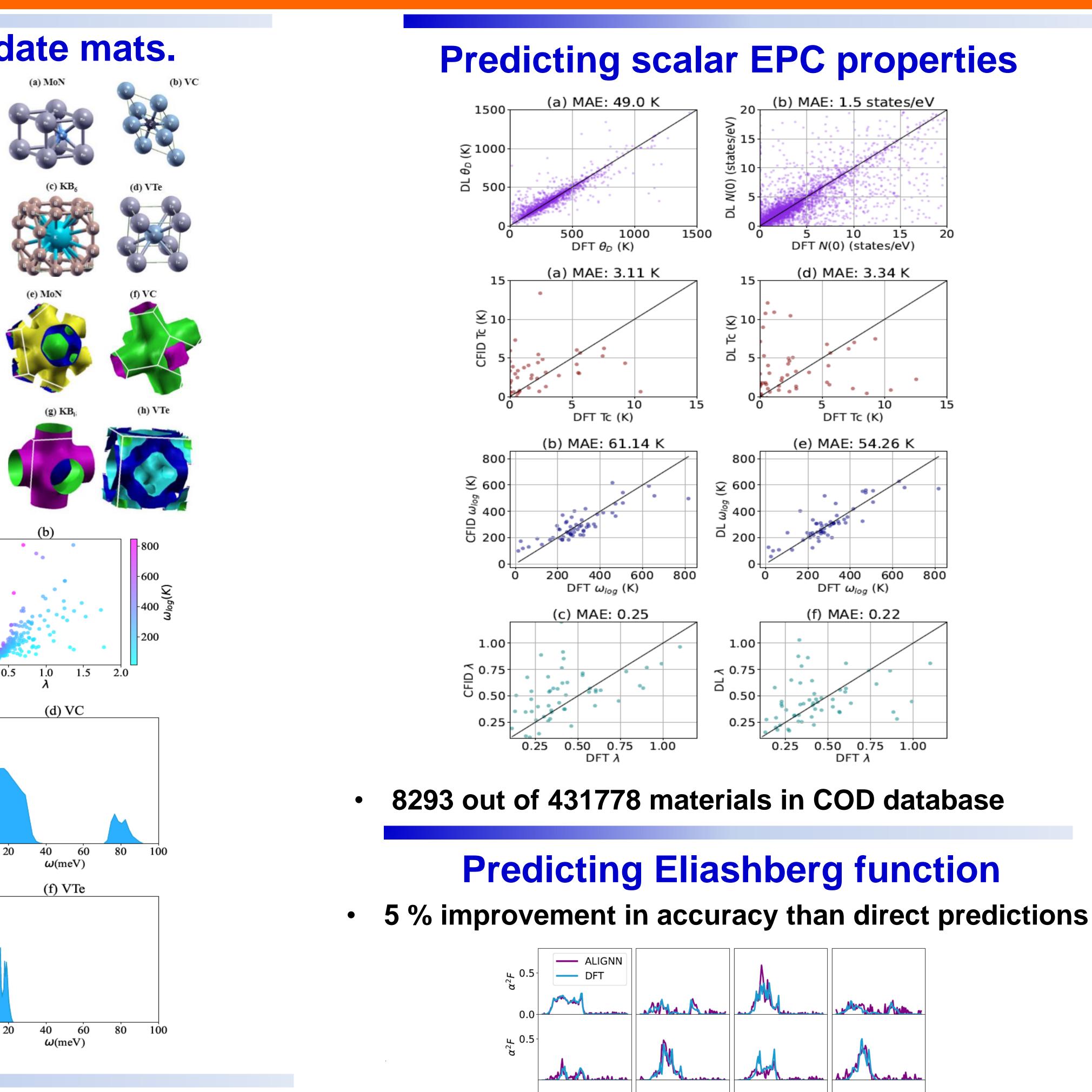
$$\left[\int \int d\omega e^{\alpha^{2}F(\omega)} \ln \omega\right]$$

 $\omega_{log} = \exp\left[\frac{\int d\omega - \omega d\omega}{\int d\omega \frac{\alpha^2 F(\omega)}{\omega}}\right]$

Al
$$225$$
 816 1.7 Ta 229 1014 4.7 Pb 225 961 7.7 Nb 229 934 9.7 ZrN 225 19679 10.7 V_3Si 223 14960 17.7 MgB₂ 191 19821 39.7 V 229 14837 5.7 Nb_3Si 223 15938 13.7 NbO 221 14492 1.7 NbC 225 19889 15.7 NbN 221 36335 10.7 NbN 221 36335 10.7 Nb₃Al 223 11981 10.7 YH₁₀(250GPa) 225 20.7 LaH₁₀(250GPa) 225 20.7

Form.

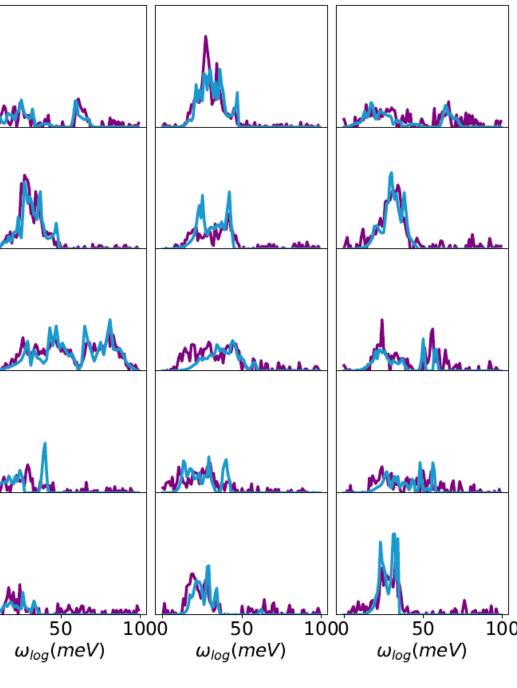

Spg JID E


EPC database & candidate mats.

		pas	se d	X	Ca	nc	
Form.	Spg	JID	ICSD	E_{for}	$_{rm} T_C$	(K)	
MoN		16897	187185	-0.4	7 <mark>3</mark> 3.		
CaB_2 ZrN	191	$36379 \\ 13861$					
VC		19657					
Mn		25344		0.08			
LiC	11	139314		-0.0			
ScN		15086	290470				
LaN_2		118592		-1.0			
VRu B ₂ CN		$19694 \\91700$		and the	and a state of		
-	221						
	191		30420	-0.6			
TaC	187	36405		-0.2			
NbS	194	18923	44992	-0.93			
CoN NbRu ₃ C		$14724 \\ 8528$	236792 77216	-0.0			Í
TaS		4699	52114	-0.7			
VOs		122961	02111	-0.2			
RuO_2	136	19852	236962	-1.23	3 14.	0	
		14726	614908		and analysis		
V_3Al		36199		-0.1			
TiO LiBe ₂ Ru	221 123	50092 71476		-2.6			
V ₂ TcRu				-0.1			
LiBe ₂ Ru				-0.1			
V_2 TcRu	225	41603		-0.3	0 12.	3	
600 T		(a)			_	_	
000					-30	30-	
400-							
ω _{log} (K)	1				²⁰ 2	(¥) ²⁰⁻	
ຈັ້ ₂₀₀ -			• •		Ľ	-	
200					- 10	10-	
0					0	0-	
0+ 0.0	0 (0.5 1.0 λ	1.5	2.0	-0	0.0	0.
) MoN				
1.5			,			1.5	
_ 1.0-						1.0-	
α ² F(ω)						1.0	
$\alpha^{2}F$						0.5	
0.5-			V			0.5-	
			_ \				
0.0		20 40	60	80	100	0.0	2
		ω	(meV)				
1.5 _T		(e)) KB ₆			1.5	
_ 1.0-						1.0-	
(3) ^{1.0}						1.0	
$\alpha^{2}F(\omega)$							
0.5-						0.5	Y
0.0		20 40	60	80	100	0.0 0	2
			(meV)				

xp	SCDFT	LM	J-Scr
2	1.55	0.3	1.6
5	5.17	2.45	7.6
2	6.06	4.95	5.4
3	10.29	7.0	10.7
0.0	11.6	6.12	10.0
7	18.1	13.1	17.6
9	35.4	20.04	33.0
3			18.3
8.0			16.5
38			3.6
2			17.1
6.0			17.6
2			5.1
5.8			9.0
50			213.5
11			190.0

ALIGNN model Atomistic line graph neural network model



α²Γ α² Ε

Publications

• "Designing High-Tc Superconductors with BCS-inspired Screening, Density Functional Theory and Deep-learning," arXiv:2205.00060 (2022). "Atomistic Line Graph Neural Network for improved materials property predictions", npj Computational Materials, 7, 1 (2022). "The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design", npj Computational Materials, 6, 1 (2020).